Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain's visual circuits do error correction on the fly

08.12.2010
The brain's visual neurons continually develop predictions of what they will perceive and then correct erroneous assumptions as they take in additional external information, according to new research done at Duke University.

This new mechanism for visual cognition challenges the currently held model of sight and could change the way neuroscientists study the brain.

The new vision model is called predictive coding. It is more complex and adds an extra dimension to the standard model of sight. The prevailing model has been that neurons process incoming data from the retina through a series of hierarchical layers. In this bottom-up system, the lower neurons first detect an object's features, such as horizontal or vertical lines. The neurons send that information to the next level of brain cells that identify other specific features and feed the emerging image to the next layer of neurons, which add additional details. The image travels up the neuron ladder until it is completely formed.

But new brain imaging data from a study led by Duke researcher Tobias Egner provides "clear and direct evidence" that the standard picture of vision, called feature detection, is incomplete. The data, published Dec. 8 in the Journal of Neuroscience, show that the brain predicts what it will see and edits those predictions in a top-down mechanism, said Egner, who is an assistant professor of psychology and neuroscience.

In this system, the neurons at each level form and send context-sensitive predictions about what an image might be to the next lower neuron level. The predictions are compared with the incoming sensory data. Any mismatches, or prediction errors, between what the neurons expected to see and what they observe are sent up the neuron ladder. Each neuron layer then adjusts its perceptions of an image in order to eliminate prediction error at the next lower layer.

Finally, once all prediction error is eliminated, "the visual cortex has assigned its best guess interpretation of what an object is, and a person actually sees the object," Egner said. He noted that this happens subconsciously in a matter of milliseconds. "You never even really know you're doing it," he said.

Egner and his colleagues wanted to capture the process almost as it happened. The team used functional Magnetic Resonance Imaging, or fMRI, brain scans of the fusiform face area (FFA), a region that deals with recognizing faces. The researchers monitored 16 subjects' brains as they observed faces or houses framed in different colored boxes that predicted the likelihood of the picture being a face or house. Study participants were told to press a button when they observed an inverted image of a face or house, but the researchers were measuring something else. By changing the face-frame or house-frame color combination, the researchers controlled and measured the FFA neural response to tease apart responses to the stimulus, face expectation and error processing.

If the feature detection model were correct, the FFA neural response should be stronger for faces than houses, irrespective of the subjects' expectations. But Egner and his colleagues found that if subjects had a high expectation of seeing a face, their neural response was nearly the same whether they were actually shown a face or a house. The study goes on to use computational modeling to show that this pattern of neural activation can only be explained by a shared contribution from face expectation and prediction error.

This study provides support for a "very different view" of how the visual system works, said Scott Murray, a University of Washington neuroscientist who was not involved in the research. Instead of high neuron firing rates providing information about the presence of a particular feature, high firing rates are instead associated with a deviation from what neurons expect to see, Murray explained. "These deviation signals presumably provide useful tags for something the visual system has to process more to understand."

Egner said that theorists have been developing the predictive coding model for the past 30 years, but no previous studies have directly tested it against the feature detection model. "This paper is provocative and motions toward a change in the preconception of how vision works. In essence, more scientists may become more sympathetic to the new model," he said.

Murray also said that the findings could influence the way neuroscientists continue to study the brain. Most research assumes that if a brain region has a large response to a particular visual image, and then it is somehow responsible for, or specialized for, processing the content of the image. This research "challenges that assumption," he said, explaining that future studies have to take into account expectations that participants have for the visual images being presented.

Ashley Yeager | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>