Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain's visual circuits do error correction on the fly

08.12.2010
The brain's visual neurons continually develop predictions of what they will perceive and then correct erroneous assumptions as they take in additional external information, according to new research done at Duke University.

This new mechanism for visual cognition challenges the currently held model of sight and could change the way neuroscientists study the brain.

The new vision model is called predictive coding. It is more complex and adds an extra dimension to the standard model of sight. The prevailing model has been that neurons process incoming data from the retina through a series of hierarchical layers. In this bottom-up system, the lower neurons first detect an object's features, such as horizontal or vertical lines. The neurons send that information to the next level of brain cells that identify other specific features and feed the emerging image to the next layer of neurons, which add additional details. The image travels up the neuron ladder until it is completely formed.

But new brain imaging data from a study led by Duke researcher Tobias Egner provides "clear and direct evidence" that the standard picture of vision, called feature detection, is incomplete. The data, published Dec. 8 in the Journal of Neuroscience, show that the brain predicts what it will see and edits those predictions in a top-down mechanism, said Egner, who is an assistant professor of psychology and neuroscience.

In this system, the neurons at each level form and send context-sensitive predictions about what an image might be to the next lower neuron level. The predictions are compared with the incoming sensory data. Any mismatches, or prediction errors, between what the neurons expected to see and what they observe are sent up the neuron ladder. Each neuron layer then adjusts its perceptions of an image in order to eliminate prediction error at the next lower layer.

Finally, once all prediction error is eliminated, "the visual cortex has assigned its best guess interpretation of what an object is, and a person actually sees the object," Egner said. He noted that this happens subconsciously in a matter of milliseconds. "You never even really know you're doing it," he said.

Egner and his colleagues wanted to capture the process almost as it happened. The team used functional Magnetic Resonance Imaging, or fMRI, brain scans of the fusiform face area (FFA), a region that deals with recognizing faces. The researchers monitored 16 subjects' brains as they observed faces or houses framed in different colored boxes that predicted the likelihood of the picture being a face or house. Study participants were told to press a button when they observed an inverted image of a face or house, but the researchers were measuring something else. By changing the face-frame or house-frame color combination, the researchers controlled and measured the FFA neural response to tease apart responses to the stimulus, face expectation and error processing.

If the feature detection model were correct, the FFA neural response should be stronger for faces than houses, irrespective of the subjects' expectations. But Egner and his colleagues found that if subjects had a high expectation of seeing a face, their neural response was nearly the same whether they were actually shown a face or a house. The study goes on to use computational modeling to show that this pattern of neural activation can only be explained by a shared contribution from face expectation and prediction error.

This study provides support for a "very different view" of how the visual system works, said Scott Murray, a University of Washington neuroscientist who was not involved in the research. Instead of high neuron firing rates providing information about the presence of a particular feature, high firing rates are instead associated with a deviation from what neurons expect to see, Murray explained. "These deviation signals presumably provide useful tags for something the visual system has to process more to understand."

Egner said that theorists have been developing the predictive coding model for the past 30 years, but no previous studies have directly tested it against the feature detection model. "This paper is provocative and motions toward a change in the preconception of how vision works. In essence, more scientists may become more sympathetic to the new model," he said.

Murray also said that the findings could influence the way neuroscientists continue to study the brain. Most research assumes that if a brain region has a large response to a particular visual image, and then it is somehow responsible for, or specialized for, processing the content of the image. This research "challenges that assumption," he said, explaining that future studies have to take into account expectations that participants have for the visual images being presented.

Ashley Yeager | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>