Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain's center for perceiving 3-D motion is identified

23.07.2009
For avoiding predators and watching 3-D movies, perceiving 3-D motion is critical

Ducking a punch or a thrown spear calls for the power of the human brain to process 3-D motion, and to perceive an object (whether it's offensive or not) moving in three dimensions is critical to survival. It also leads to a lot of fun at 3-D movies.

Neuroscientists have now pinpointed where and how the brain processes 3-D motion using specially developed computer displays and an fMRI (functional magnetic resonance imaging) machine to scan the brain.

They found, surprisingly, that 3-D motion processing occurs in an area in the brain—located just behind the left and right ears—long thought to only be responsible for processing two-dimensional motion (up, down, left and right).

This area, known simply as MT+, and its underlying neuron circuitry are so well studied that most scientists had concluded that 3-D motion must be processed elsewhere. Until now.

"Our research suggests that a large set of rich and important functions related to 3-D motion perception may have been previously overlooked in MT+," says Alexander Huk, assistant professor of neurobiology. "Given how much we already know about MT+, this research gives us strong clues about how the brain processes 3-D motion."

For the study, Huk and his colleagues had people watch 3-D visualizations while lying motionless for one or two hours in an MRI scanner fitted with a customized stereovision projection system.

The fMRI scans revealed that the MT+ area had intense neural activity when participants perceived objects (in this case, small dots) moving toward and away from their eyes. Colorized images of participants' brains show the MT+ area awash in bright blue.

The tests also revealed how the MT+ area processes 3-D motion: it simultaneously encodes two types of cues coming from moving objects.

There is a mismatch between what the left and right eyes see. This is called binocular disparity. (When you alternate between closing your left and right eye, objects appear to jump back and forth.)

For a moving object, the brain calculates the change in this mismatch over time.

Simultaneously, an object speeding directly toward the eyes will move across the left eye's retina from right to left and the right eye's retina from left to right.

"The brain is using both of these ways to add 3-D motion up," says Huk. "It's seeing a change in position over time, and it's seeing opposite motions falling on the two retinas."

That processing comes together in the MT+ area.

"Who cares if the tiger or the spear is going from side to side?" says Lawrence Cormack, associate professor of psychology. "The most important kind of motion you can see is something coming at you, and this critical process has been elusive to us. Now we are beginning to understand where it occurs in the brain."

Huk, Cormack, and post-doctoral research and lead author Bas Rokers published their findings in Nature Neuroscience online the week of July 7. They are members of the Institute for Neuroscience and Center for Perceptual Systems. The research was supported by a National Science Foundation CAREER Award to Huk.

Dr. Alexander Huk | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>