Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boston University researchers validate important roles of iPSCs in regenerative medicine

03.05.2011
Researchers from Boston University’s Center for Regenerative Medicine (CReM) have demonstrated that induced pluripotent stem cells (iPSCs) can differentiate into definitive endoderm cells, in vitro, with similar functional potential when compared to embryonic stem cells (ESCs), despite minor molecular differences between the two cell types.

These findings are particularly important given growing controversy in the scientific literature about whether subtle differences between iPSCs and ESCs should dampen enthusiasm for iPSCs to serve as an alternative source of differentiated precursor cells for various tissues, such as the liver, lung or blood. The new work provides compelling evidence that iPSCs have potential in regenerative medicine as an investigational tool for the development of treatments against diseases that affect endodermal-derived organs, such as cirrhosis, diabetes, cystic fibrosis and emphysema.

Darrell Kotton, MD, an associate professor of medicine and pathology at Boston University School of Medicine(BUSM), served as principal investigator and senior author for this study, which is published online in the Journal of Clinical Investigation (JCI). Constantina Christodoulou, BS, from BUSM’s program in genetics and genomics, was the lead author of the study.

iPSCs, discovered in 2006, are derived by reprogramming adult cells into a primitive stem cell state. They are similar to ESCs in terms of their ability to differentiate into different types of cells in vivo, including endoderm cells that give rise to liver and lung tissue. iPSCs do not require embryos and they are genetically identical to the patient’s cells, suggesting their future potential to be transplanted back into the same patient without risk of rejection. Additionally, iPSCs could reduce the reliance on ESCs, which remain highly controversial and have limited availability due to federal regulation.

Recently, however, there has been debate regarding whether the molecular differences found in iPSCs make them as functional for research as ESCs when used in regenerative medicine research.

Kotton and his colleagues set out to understand the limits and potential of iPSCs and whether they should be utilized in research as a basis for the development of potential therapies. They focused their research on the capacity of iPSCs to undergo differentiation in vitro into endodermal tissue.

Working together with the laboratory of Gustavo Mostoslavsky, MD, PhD, assistant professor of medicine at BUSM, the teams of CReM investigators generated their own iPSC lines by reprogramming skin fibroblasts using a special stem cell cassette vector (STEMCC). They interrogated the global gene expression profiles of each cell line during endodermal differentiation and also compared the resulting cells to authentic endoderm from early developing mouse embryos.

“We found that although there are subtle molecular differences between iPSCs and ESCs, their functional potential to differentiate was virtually indistinguishable in vitro,” said Kotton, who is a co-director of CReM. “It is important to understand that iPSCs offer many possibilities in regenerative medicine and developmental biology research and may hold the key to future medical treatments for many human diseases.”

The next step, said Kotton, is to further differentiate iPSCs into more specific cell types using both mouse and human stem cell lines. CReM currently has 100 stem cell lines from donors with lung-specific diseases that will be used in the research to develop potential treatments against diseases that affect the lungs.

The CReM-led research was done in collaboration with other researchers at BU, including the laboratory of Avi Spira, MD, chief of computational biomedicine at BUSM, the laboratory of Paul Gadue, PhD, at the University of Pennsylvania and the laboratory of Valerie Gouon-Evans, PhD, at Mount Sinai School of Medicine.

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

Further reports about: ESCs Medicine cell type medical treatment mouse embryo regenerative medicine

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>