Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boost for Methanol?

21.08.2009
New solid catalyst for the direct low-temperature oxidation of methane to methanol

As a possible energy source for fuel cells or a substitute for gasoline, methanol is increasingly drawing attention beyond its importance as a feedstock for chemical industry. It can be stored much more efficiently and cheaply than hydrogen and could be distributed by way of the existing network of fuelling stations.

The disadvantage is the truly complex synthesis of methanol from natural gas via a detour through synthesis gas. One interesting alternative that was pursued and then abandoned is known as the direct low-temperature oxidation of methane to methanol.

A team led by Ferdi Schüth at the Max Plank Institute of Coal Research in Mülheim (Germany) and Markus Antonietti at the Max Planck Institute for Colloids and Interfaces in Potsdam-Golm (Germany) has now developed a novel catalyst. As the researchers report in the journal Angewandte Chemie, this could provide a second wind, if not a major breakthrough, for this process.

“The development of catalyst systems for the direct low-temperature oxidation of methane to methanol has been one of the major challenges in catalysis over the last decades,” says Schüth. The problem is that the bonds in methane are very strong and difficult to break. In addition, under the reaction conditions required, methanol has the tendency to react further to form carbon dioxide. The process thus requires not only highly active but also highly selective catalysts.

One breakthrough was the development of a platinum complex by a research group led by Roy Periana. This complex catalyzes the low-temperature oxidation of methane in concentrated sulfuric acid at temperatures around 200 °C to form methyl sulfate—which can be converted into methanol—in good yield and high selectivity. Despite highly promising results, the complex separation and difficult recycling of this dissolved catalyst, among other things, hampered the commercial application of this process. Development proceeded to the pilot-plant stage before being abandoned. “A solid catalyst that can be easily separated could make such a process viable on a small scale, making possible the efficient, decentralized consumption of natural gas,” says Schüth.

The German researchers have now been able to develop such a solid catalyst, whose high reactivity and selectivity, and its outstanding stability through numerous recycling steps, have raised hopes of its industrial implementation. “Our development is based on a recently discovered class of high-performance polymers,” explains Anonietti. Polymerization of a ring-shaped molecule, an aromatic nitrile, results in a network known to chemists as a “covalent triazine-based framework”, abbreviated as CTF. Loading this substance with platinum results in a highly active, easily separated, and recyclable catalyst.

Author: Ferdi Schüth, Max-Planck-Institut für Kohlenforschung (Germany), http://www.mpi-muelheim.mpg.de/kofo/mpikofo_home.html

Title: Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to Methanol

Angewandte Chemie International Edition 2009, 48, No. 37, 6909–6912, doi: 10.1002/anie.200902009

Ferdi Schüth | Angewandte Chemie
Further information:
http://www.mpi-muelheim.mpg.de/kofo/mpikofo_home.html
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>