Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bone-Munching Worms from the Deep Sea Thrive on Fish Bones

A new study led by a scientist at Scripps Institution of Oceanography at UC San Diego is painting a more complete picture of an extraordinary sea worm that makes its living in the depths of the ocean on the bones of dead animals.

Discovered fewer than 10 years ago off Monterey, Calif., but since identified in other oceans, the flower-like marine “boneworms,” or Osedax, have been documented mainly living upon whale carcasses that fall to the ocean floor, leading some scientists to argue that Osedax specializes in whale bones. But Scripps Professor Greg Rouse, along with colleagues at Occidental College and Monterey Bay Aquarium Research Institute (MBARI) wondered: Do Osedax boneworms also live on the bones of non-mammals?

To assess the question, the researchers carried out an experiment, which is described in the April 13 online edition of Biology Letters, a Royal Society journal. The team employed MBARI’s remotely operated vehicles Ventana and Doc Ricketts to deploy tuna and wahoo bones, as well as shark cartilage inside wire cages at approximately 1,000-meter (3,280-foot) depth off Monterey, Calif. When the researchers retrieved the cages five months later, they found Osedax living on the fish bones, although the shark cartilage had already been eaten by unknown organisms.

“We weren’t sure that Osedax boneworms would be able to settle on fish bone and to grow to maturity and breed. When it actually turned out that we could establish all these things it was very satisfying,” said Rouse. “That we actually found three different Osedax species living on the fish bones was a further bonus. The finding shows that Osedax boneworms are not whale bone specialists, but are arguably generalists and able to exploit a variety of vertebrate bones.”

The finding also lends support to a hypothesis they have previously proposed that Osedax and its bone-eating lifestyle may have evolved millions of years ago during a time known as the Cretaceous period, well before the dawn of marine mammals.

“These bone-eating worms may have expanded their feeding niche several times to exploit the bones of large marine vertebrates as they successively colonized the world’s oceans from land,” say the authors in the paper.

The scientists say Osedax’s ability to exploit non-mammalian bones could be an ancestral trait: “We suggest that whalebones are but one in a long series of food sources that Osedax has exploited and continues to exploit.”

“Our experimental studies at MBARI have identified 17 species of Osedax from various depths in Monterey submarine canyon,” said MBARI’s Bob Vrijenhoek, a paper coauthor. “We now know that the worms are capable of subsisting on a variety of bones from cows, pigs and seals, but this new discovery of Osedax on fish bones forces us to take a fresh look at their nutritional limits and evolution.”

The team now plans to further study the possible use of shark remains by Osedax and describe and further understand a host of new species of boneworms they have discovered off Monterey. They also plan to study how the worms actually eat into bone.

In addition to Rouse and Vrijenhoek, coauthors of the study include Shana Goffredi of Occidental College and Shannon Johnson of MBARI.

Funding for the study was provided by the David and Lucile Packard Foundation (through MBARI) and Scripps Institution of Oceanography.

Mario Aguilera | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>