Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone-Munching Worms from the Deep Sea Thrive on Fish Bones

18.04.2011
A new study led by a scientist at Scripps Institution of Oceanography at UC San Diego is painting a more complete picture of an extraordinary sea worm that makes its living in the depths of the ocean on the bones of dead animals.

Discovered fewer than 10 years ago off Monterey, Calif., but since identified in other oceans, the flower-like marine “boneworms,” or Osedax, have been documented mainly living upon whale carcasses that fall to the ocean floor, leading some scientists to argue that Osedax specializes in whale bones. But Scripps Professor Greg Rouse, along with colleagues at Occidental College and Monterey Bay Aquarium Research Institute (MBARI) wondered: Do Osedax boneworms also live on the bones of non-mammals?

To assess the question, the researchers carried out an experiment, which is described in the April 13 online edition of Biology Letters, a Royal Society journal. The team employed MBARI’s remotely operated vehicles Ventana and Doc Ricketts to deploy tuna and wahoo bones, as well as shark cartilage inside wire cages at approximately 1,000-meter (3,280-foot) depth off Monterey, Calif. When the researchers retrieved the cages five months later, they found Osedax living on the fish bones, although the shark cartilage had already been eaten by unknown organisms.

“We weren’t sure that Osedax boneworms would be able to settle on fish bone and to grow to maturity and breed. When it actually turned out that we could establish all these things it was very satisfying,” said Rouse. “That we actually found three different Osedax species living on the fish bones was a further bonus. The finding shows that Osedax boneworms are not whale bone specialists, but are arguably generalists and able to exploit a variety of vertebrate bones.”

The finding also lends support to a hypothesis they have previously proposed that Osedax and its bone-eating lifestyle may have evolved millions of years ago during a time known as the Cretaceous period, well before the dawn of marine mammals.

“These bone-eating worms may have expanded their feeding niche several times to exploit the bones of large marine vertebrates as they successively colonized the world’s oceans from land,” say the authors in the paper.

The scientists say Osedax’s ability to exploit non-mammalian bones could be an ancestral trait: “We suggest that whalebones are but one in a long series of food sources that Osedax has exploited and continues to exploit.”

“Our experimental studies at MBARI have identified 17 species of Osedax from various depths in Monterey submarine canyon,” said MBARI’s Bob Vrijenhoek, a paper coauthor. “We now know that the worms are capable of subsisting on a variety of bones from cows, pigs and seals, but this new discovery of Osedax on fish bones forces us to take a fresh look at their nutritional limits and evolution.”

The team now plans to further study the possible use of shark remains by Osedax and describe and further understand a host of new species of boneworms they have discovered off Monterey. They also plan to study how the worms actually eat into bone.

In addition to Rouse and Vrijenhoek, coauthors of the study include Shana Goffredi of Occidental College and Shannon Johnson of MBARI.

Funding for the study was provided by the David and Lucile Packard Foundation (through MBARI) and Scripps Institution of Oceanography.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>