Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using bone marrow to protect the brain

Stem cell technology from Tel Aviv University research begins clinical trial for Lou Gehrig's disease

The ability to produce neuroprotectors, proteins that protect the human brain against neurodegenerative disorders such as Parkinson's and ALS, is the holy grail of brain research.

A technology developed at Tel Aviv University does just that, and it's now out of the lab and in hospitals to begin clinical trials with patients suffering from amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease.

Developed by Prof. Daniel Offen and Prof. Eldad Melamed of TAU's Sackler Faculty of Medicine and Felsenstein Medical Research Center, the technology is now a patent-pending process that takes stem cells from a patient's own bone marrow and causes them to differentiate into astrocyte-like cells, which are responsible for the well-being of the brain's neurons. The cells release neurotrophic factors, or neuroprotectants, which have been shown to play a key role in reducing the progress of ALS, a debilitating disease characterized by the progressive degeneration of motor neurons, resulting in paralysis of a patient's limbs and organ function.

The research has appeared in the Journal of Stem Cells Reviews and Reports and a number of other publications.

Trials in Jerusalem and Boston

This stem cell technology, says Prof. Offen, represents 10 years of development. Inspired by advances in embryonic stem cell research and its huge potential – but trying to bypass the ethical and safety issues – Prof. Offen and his fellow researchers turned to stem cells derived from a patient's own bone marrow.

After coaxing the cells to differentiate into astrocyte-like cells, whose natural function is to guard the brain's neurons and prevent deterioration, the researchers began testing the concept in animal models. "In the mouse model," Prof. Offen explains, "we were able to show that the bone marrow derived stem cells prevent degeneration in the brain following injection of selective neurotoxins." Researchers also demonstrated that transplantation of these cells increased the survival rate in the mouse model of ALS and significantly delayed the progress of motor dysfunction.

According to Prof. Offen, this is a uniquely successful method for differentiating bone marrow stem cells into astrocyte-like cells without manipulating the genetic material of the cell itself. They are the first team of researchers to demonstrate the efficacy of this technology in vivo in various models of neurodegenerative diseases.

The technology was licensed to BrainStorm Cell Therapeutics that has developed it into a clinical grade product called NurOwn™, which is now being used in a clinical trial at Jerusalem's Hadassah Medical Center. BrainStorm Cell Therapeutics has recently struck an agreement to expand clinical trials to Massachusetts General Hospital in collaboration with the University of Massachusetts Medical School.

Home-grown therapy — and talent

The ongoing clinical studies are aimed at evaluating the safety and the efficacy of this treatment, says Prof. Offen. Because the original cells are drawn from the patients themselves, he adds, the body should have no adverse reactions.

Although the current study targets ALS, these cells have the potential to treat a broad range of neurodegenerative conditions, including Parkinson's and Huntington's diseases. For many conditions, explains Prof. Offen, the current available treatments only attempt to alleviate the symptoms of these diseases rather than repair existing damage.

BrainStorm Cell Therapeutics, the company that is developing the technology, is a spin-off of TAU, Prof. Offen notes. The university has spearheaded the invention involved, and a number of the researchers working within the company graduated from TAU.

American Friends of TelAvivUniversity ( supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, TelAvivUniversity consistently produces work with profound implications for the future.

George Hunka | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>