Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using bone marrow to protect the brain

20.09.2011
Stem cell technology from Tel Aviv University research begins clinical trial for Lou Gehrig's disease

The ability to produce neuroprotectors, proteins that protect the human brain against neurodegenerative disorders such as Parkinson's and ALS, is the holy grail of brain research.

A technology developed at Tel Aviv University does just that, and it's now out of the lab and in hospitals to begin clinical trials with patients suffering from amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease.

Developed by Prof. Daniel Offen and Prof. Eldad Melamed of TAU's Sackler Faculty of Medicine and Felsenstein Medical Research Center, the technology is now a patent-pending process that takes stem cells from a patient's own bone marrow and causes them to differentiate into astrocyte-like cells, which are responsible for the well-being of the brain's neurons. The cells release neurotrophic factors, or neuroprotectants, which have been shown to play a key role in reducing the progress of ALS, a debilitating disease characterized by the progressive degeneration of motor neurons, resulting in paralysis of a patient's limbs and organ function.

The research has appeared in the Journal of Stem Cells Reviews and Reports and a number of other publications.

Trials in Jerusalem and Boston

This stem cell technology, says Prof. Offen, represents 10 years of development. Inspired by advances in embryonic stem cell research and its huge potential – but trying to bypass the ethical and safety issues – Prof. Offen and his fellow researchers turned to stem cells derived from a patient's own bone marrow.

After coaxing the cells to differentiate into astrocyte-like cells, whose natural function is to guard the brain's neurons and prevent deterioration, the researchers began testing the concept in animal models. "In the mouse model," Prof. Offen explains, "we were able to show that the bone marrow derived stem cells prevent degeneration in the brain following injection of selective neurotoxins." Researchers also demonstrated that transplantation of these cells increased the survival rate in the mouse model of ALS and significantly delayed the progress of motor dysfunction.

According to Prof. Offen, this is a uniquely successful method for differentiating bone marrow stem cells into astrocyte-like cells without manipulating the genetic material of the cell itself. They are the first team of researchers to demonstrate the efficacy of this technology in vivo in various models of neurodegenerative diseases.

The technology was licensed to BrainStorm Cell Therapeutics that has developed it into a clinical grade product called NurOwn™, which is now being used in a clinical trial at Jerusalem's Hadassah Medical Center. BrainStorm Cell Therapeutics has recently struck an agreement to expand clinical trials to Massachusetts General Hospital in collaboration with the University of Massachusetts Medical School.

Home-grown therapy — and talent

The ongoing clinical studies are aimed at evaluating the safety and the efficacy of this treatment, says Prof. Offen. Because the original cells are drawn from the patients themselves, he adds, the body should have no adverse reactions.

Although the current study targets ALS, these cells have the potential to treat a broad range of neurodegenerative conditions, including Parkinson's and Huntington's diseases. For many conditions, explains Prof. Offen, the current available treatments only attempt to alleviate the symptoms of these diseases rather than repair existing damage.

BrainStorm Cell Therapeutics, the company that is developing the technology, is a spin-off of TAU, Prof. Offen notes. The university has spearheaded the invention involved, and a number of the researchers working within the company graduated from TAU.

American Friends of TelAvivUniversity (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, TelAvivUniversity consistently produces work with profound implications for the future.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>