Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonding together to fight HIV

25.11.2013
A collaborative team led by a Northeastern University professor may have altered the way we look at drug development for HIV by uncovering some unusual properties of a human protein called APOBEC3G (A3G).

In an article published in Nature Chemistry, Prof. Mark Williams and his graduate student Kathy Chaurasiya, along with several collaborators, show how these unusual properties help us to fight HIV infection.

APOBEC3G

It is well known that in response to virus infection, the body makes specific antibodies to counteract the infection. However, we are also born with another way to fight infection, namely through the action of defense proteins that are always present in our system. These proteins provide the first line of defense against invading pathogens. For example, we are all potentially protected against HIV because we have an antiviral protein called A3G. However, HIV has evolved a strategy to circumvent the activity of this protein by tricking our cells into destroying our own A3G proteins. This is where Prof. Williams's research comes into play.

A MULTI-FUNCTIONAL PROTEIN

A3G moves along a DNA strand as part of its function as an enzyme, and when it reaches a particular one of the four bases in DNA, it chemically alters the DNA, causing HIV to mutate. This was originally thought to be the only way A3G blocks HIV infection. However, some researchers found that even when A3G could not chemically alter the DNA, it still inhibited HIV. To explain this, Prof. Williams's collaborator Dr. Judith Levin from NIH, together with postdoctoral fellow Dr. Yasumasa Iwatani, proposed that A3G forms a roadblock that prevents the virus from making a DNA copy of its genome, thereby stopping HIV replication. This would require A3G to be more slow-acting, yet because the protein normally has to move fast to perform its chemical function, there seemed to be an apparent contradiction in the experimental results.

Professor Williams' research resolves this paradox and shows that the A3G protein does not always have the rapid movement needed for chemical function. Instead, its activity changes over time. "First, A3G is a really fast protein," said Williams. "Then, gradually over time, it becomes a slow protein and remains bound to the DNA, blocking replication."

CHALLENGING POPULAR OPINION

Many researchers doubted that a protein could have both enzyme and roadblock functions. An enzyme is designed to act rapidly, so the idea of the A3G protein starting off fast, and then gradually slowing down seemed physically impossible. Professor Williams' collaborator Dr. Ioulia Rouzina from the University of Minnesota came up with the novel idea that when A3G proteins group together, they become slower over time. To test the idea, the Williams lab used an instrument called optical tweezers that allowed them to stretch single DNA molecules with A3G proteins bound. By measuring the change in DNA length over time as the proteins came on and off the DNA, they could show that the rates at which A3G bound to DNA became slower over time.

How does this happen? It was already known that A3G proteins bind to each other and form a multi-protein complex. "Once the complex is formed, the A3G proteins are no longer able to move rapidly along the DNA strand as needed for chemical modification of the DNA," said Williams. "This suggests that slow binding can also block HIV replication."

IMPACT ON HIV RESEARCH

The A3G protein has at least two mechanisms by which it can block HIV replication. We have known for over 10 years that A3G can, in principle, provide protection from HIV. However, finding a drug that can counter the anti-A3G activity of the virus has been elusive. This new work has the potential to develop alternative approaches to HIV therapy and development of drugs that can enhance the roadblock activity of A3G. This provides an alternate pathway for drug development that has not previously been pursued.

In addition to members of Professor Williams' laboratory at Northeastern University, other researchers contributing to this work included members of the laboratories of Professor Karin Musier-Forsyth at The Ohio State University, Dr. Judith Levin at the NIH, and Dr. Yasumasa Iwatani at Nagoya Medical Center.

This research was generously supported by funding from the National Science Foundation and from the extramural and intramural programs at the NIH.

Lori Lennon | EurekAlert!
Further information:
http://www.neu.edu

Further reports about: DNA DNA molecule DNA strand G proteins HIV HIV infection NIH optical tweezer

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>