Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonding together to fight HIV

25.11.2013
A collaborative team led by a Northeastern University professor may have altered the way we look at drug development for HIV by uncovering some unusual properties of a human protein called APOBEC3G (A3G).

In an article published in Nature Chemistry, Prof. Mark Williams and his graduate student Kathy Chaurasiya, along with several collaborators, show how these unusual properties help us to fight HIV infection.

APOBEC3G

It is well known that in response to virus infection, the body makes specific antibodies to counteract the infection. However, we are also born with another way to fight infection, namely through the action of defense proteins that are always present in our system. These proteins provide the first line of defense against invading pathogens. For example, we are all potentially protected against HIV because we have an antiviral protein called A3G. However, HIV has evolved a strategy to circumvent the activity of this protein by tricking our cells into destroying our own A3G proteins. This is where Prof. Williams's research comes into play.

A MULTI-FUNCTIONAL PROTEIN

A3G moves along a DNA strand as part of its function as an enzyme, and when it reaches a particular one of the four bases in DNA, it chemically alters the DNA, causing HIV to mutate. This was originally thought to be the only way A3G blocks HIV infection. However, some researchers found that even when A3G could not chemically alter the DNA, it still inhibited HIV. To explain this, Prof. Williams's collaborator Dr. Judith Levin from NIH, together with postdoctoral fellow Dr. Yasumasa Iwatani, proposed that A3G forms a roadblock that prevents the virus from making a DNA copy of its genome, thereby stopping HIV replication. This would require A3G to be more slow-acting, yet because the protein normally has to move fast to perform its chemical function, there seemed to be an apparent contradiction in the experimental results.

Professor Williams' research resolves this paradox and shows that the A3G protein does not always have the rapid movement needed for chemical function. Instead, its activity changes over time. "First, A3G is a really fast protein," said Williams. "Then, gradually over time, it becomes a slow protein and remains bound to the DNA, blocking replication."

CHALLENGING POPULAR OPINION

Many researchers doubted that a protein could have both enzyme and roadblock functions. An enzyme is designed to act rapidly, so the idea of the A3G protein starting off fast, and then gradually slowing down seemed physically impossible. Professor Williams' collaborator Dr. Ioulia Rouzina from the University of Minnesota came up with the novel idea that when A3G proteins group together, they become slower over time. To test the idea, the Williams lab used an instrument called optical tweezers that allowed them to stretch single DNA molecules with A3G proteins bound. By measuring the change in DNA length over time as the proteins came on and off the DNA, they could show that the rates at which A3G bound to DNA became slower over time.

How does this happen? It was already known that A3G proteins bind to each other and form a multi-protein complex. "Once the complex is formed, the A3G proteins are no longer able to move rapidly along the DNA strand as needed for chemical modification of the DNA," said Williams. "This suggests that slow binding can also block HIV replication."

IMPACT ON HIV RESEARCH

The A3G protein has at least two mechanisms by which it can block HIV replication. We have known for over 10 years that A3G can, in principle, provide protection from HIV. However, finding a drug that can counter the anti-A3G activity of the virus has been elusive. This new work has the potential to develop alternative approaches to HIV therapy and development of drugs that can enhance the roadblock activity of A3G. This provides an alternate pathway for drug development that has not previously been pursued.

In addition to members of Professor Williams' laboratory at Northeastern University, other researchers contributing to this work included members of the laboratories of Professor Karin Musier-Forsyth at The Ohio State University, Dr. Judith Levin at the NIH, and Dr. Yasumasa Iwatani at Nagoya Medical Center.

This research was generously supported by funding from the National Science Foundation and from the extramural and intramural programs at the NIH.

Lori Lennon | EurekAlert!
Further information:
http://www.neu.edu

Further reports about: DNA DNA molecule DNA strand G proteins HIV HIV infection NIH optical tweezer

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>