Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Body´s bacteria affect atherosclerosis

New findings suggesting that bacteria in the mouth and/or intestine can affect the the outcome pathogenesis of atherosclerosis and lead to new treatment strategies, reveals research from the University of Gothenburg, Sweden.

The results are to be published in the distinguished journal Proceedings of the National Academy of Sciences, PNAS.

“The causes of atherosclerosis have recently become clearer, but we know less about why the plaque in the arteries ruptures and contributes to clot formation,” says Fredrik Bäckhed, researcher at the Sahlgrenska Academy’s Department of Molecular and Clinical Medicine.

Inflammation increases the risk of the plaque rupture in the arteries, but the underlying mechanisms for inflammation are not clear. Our bodies are home to ten times more bacteria than cells, and research in recent years has shown that our gut flora is altered in obesity , which over time may lead to cardiovascular disease. Poor dental health and periodontitis have also been linked to atherosclerosis, which would indicate that the bacteria in the mouth or gut could affect the condition.

“We tested the hypothesis that bacteria from the mouth and/or the gut could end up in the atherosclerotic plaque and thus contribute to the development of cardiovascular disease.”

The researchers initially found that the number of bacteria in the plaque correlated with the number of white blood cells, a measure of inflammation. Next they used modern sequencing methods to determine the composition of the bacteria in the mouth, gut and arterial plaque of 15 patients, and in the mouth and gut of 15 healthy control subjects. They found that several bacteria were found in the atherosclerotic plaques and, primarily, the mouth, but also the gut, of the same patient and that the bacteria Pseudomonas luteola and Chlamydia pneumoniae were present in all atherosclerotic plaques. These results would suggest that the bacteria can enter the body from the mouth and gut and end up min the plaque where they ultimately may contribute toinflammation and rupture of the plaque. The researchers also found that some of the bacteria in the mouth and gut correlated with biomarkers associated with cardiovascular disease.

“Finding the same bacteria in atherosclerotic plaque as in the mouth and gut of the same individual paves the way for new diagnosis and treatment strategies that work on the body’s bacteria,” says Bäckhed. “However, our findings must be backed up by larger studies, and a direct causal relationship established between the bacteria identified and atherosclerosis.”

Atherosclerosis-related conditions cause 40–50% of deaths in Sweden each year. Atherosclerosis occurs when cholesterol is stored in the body’s blood vessels and forms plaque. This makes them narrower, which – to varying degrees – risks stopping the blood from flowing, which can cause conditions such as angina, heart attacks and strokes.
For more information, please contact: Fredrik Bäckhed, docent at the Sahlgrenska Academy
Tel.: +46 31 342 7833, +46 70 2182355

Helena Aaberg | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>