Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body Movements Can Influence Problem Solving

13.05.2009
Swinging their arms helped participants in a new study solve a problem whose solution involved swinging strings, researchers report, demonstrating that the brain can use bodily cues to help understand and solve complex problems.

The study, appearing in an upcoming issue of the journal Psychonomic Bulletin & Review, is the first to show that a person’s ability to solve a problem can be influenced by how he or she moves.

“Our manipulation is changing the way people think,” said University of Illinois psychology professor Alejandro Lleras, who conducted the study with Vanderbilt University postdoctoral researcher Laura Thomas, his former graduate student. “In other words, by directing the way people move their bodies, we are – unbeknownst to them – directing the way they think about the problem.”

Even after successfully solving the problem, almost none of the study subjects became consciously aware of any connection between the physical activity they engaged in and the solution they found.

“The results are interesting both because body motion can affect higher order thought, the complex thinking needed to solve complicated problems, and because this effect occurs even when someone else is directing the movements of the person trying to solve the problem,” Lleras said.

The new findings offer new insight into what researchers call “embodied cognition,” which describes the link between body and mind, Lleras said.

“People tend to think that their mind lives in their brain, dealing in conceptual abstractions, very much disconnected from the body,” he said. “This emerging research is fascinating because it is demonstrating how your body is a part of your mind in a powerful way. The way you think is affected by your body and, in fact, we can use our bodies to help us think.”

In the study, the researchers asked study subjects to tie the ends of two strings together. The strings dangled from ceiling rafters and were so far apart that a person grasping one could not reach the other. A few tools were also available: a paperback book, a wrench, two small dumbbells and a plate. Subjects were given a total of eight, two-minute sessions to solve the problem, with 100 seconds devoted to finding a solution, interrupted by 20 seconds of exercise.

“Our cover story was that we were interested in the effects of exercise on problem-solving,” Lleras said.

Some subjects were told to swing their arms forward and backward during the exercise sessions, while others were directed to alternately stretch one arm, and then the other, to the side. To prevent them from consciously connecting these activities to the problem of the strings, the researchers had them count backwards by threes while exercising.

The subjects in the arm-swinging group were more likely than those in the stretch group to solve the problem, which required attaching an object to one of the strings and swinging it so that it could be grasped while also holding the other string. By the end of the 16-minute deadline, participants in the arm-swinging group were 40 percent more likely than those in the stretch group to solve the problem.

“By making you swing your arms in a particular way, we’re activating a part of your brain that deals with swinging motions,” Lleras said. “That sort of activity in your brain then unconsciously leads you to think about that type of motion when you’re trying to solve the problem.”

Previous studies of embodied cognition have demonstrated that physical movements can aid in learning and memory or can change a person’s perceptions or attitudes toward information, Lleras said.

Other studies by Lleras and his colleagues also have shown that directing a person’s eye movements or attention in specific patterns can also aid in solving complex problems, but this is the first study to show that directed movements of the body can, outside of conscious awareness, guide higher-order cognitive processing, he said.

“We view this as a really important new window into understanding the complexity of human thought,” he said. “I guess another take-home message is this: If you are stuck trying to solve a problem, take a break. Go do something else. This will ensure that the next time you think about that problem you will literally approach it with a different mind. And that may help!”

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>