Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body Movements Can Influence Problem Solving

13.05.2009
Swinging their arms helped participants in a new study solve a problem whose solution involved swinging strings, researchers report, demonstrating that the brain can use bodily cues to help understand and solve complex problems.

The study, appearing in an upcoming issue of the journal Psychonomic Bulletin & Review, is the first to show that a person’s ability to solve a problem can be influenced by how he or she moves.

“Our manipulation is changing the way people think,” said University of Illinois psychology professor Alejandro Lleras, who conducted the study with Vanderbilt University postdoctoral researcher Laura Thomas, his former graduate student. “In other words, by directing the way people move their bodies, we are – unbeknownst to them – directing the way they think about the problem.”

Even after successfully solving the problem, almost none of the study subjects became consciously aware of any connection between the physical activity they engaged in and the solution they found.

“The results are interesting both because body motion can affect higher order thought, the complex thinking needed to solve complicated problems, and because this effect occurs even when someone else is directing the movements of the person trying to solve the problem,” Lleras said.

The new findings offer new insight into what researchers call “embodied cognition,” which describes the link between body and mind, Lleras said.

“People tend to think that their mind lives in their brain, dealing in conceptual abstractions, very much disconnected from the body,” he said. “This emerging research is fascinating because it is demonstrating how your body is a part of your mind in a powerful way. The way you think is affected by your body and, in fact, we can use our bodies to help us think.”

In the study, the researchers asked study subjects to tie the ends of two strings together. The strings dangled from ceiling rafters and were so far apart that a person grasping one could not reach the other. A few tools were also available: a paperback book, a wrench, two small dumbbells and a plate. Subjects were given a total of eight, two-minute sessions to solve the problem, with 100 seconds devoted to finding a solution, interrupted by 20 seconds of exercise.

“Our cover story was that we were interested in the effects of exercise on problem-solving,” Lleras said.

Some subjects were told to swing their arms forward and backward during the exercise sessions, while others were directed to alternately stretch one arm, and then the other, to the side. To prevent them from consciously connecting these activities to the problem of the strings, the researchers had them count backwards by threes while exercising.

The subjects in the arm-swinging group were more likely than those in the stretch group to solve the problem, which required attaching an object to one of the strings and swinging it so that it could be grasped while also holding the other string. By the end of the 16-minute deadline, participants in the arm-swinging group were 40 percent more likely than those in the stretch group to solve the problem.

“By making you swing your arms in a particular way, we’re activating a part of your brain that deals with swinging motions,” Lleras said. “That sort of activity in your brain then unconsciously leads you to think about that type of motion when you’re trying to solve the problem.”

Previous studies of embodied cognition have demonstrated that physical movements can aid in learning and memory or can change a person’s perceptions or attitudes toward information, Lleras said.

Other studies by Lleras and his colleagues also have shown that directing a person’s eye movements or attention in specific patterns can also aid in solving complex problems, but this is the first study to show that directed movements of the body can, outside of conscious awareness, guide higher-order cognitive processing, he said.

“We view this as a really important new window into understanding the complexity of human thought,” he said. “I guess another take-home message is this: If you are stuck trying to solve a problem, take a break. Go do something else. This will ensure that the next time you think about that problem you will literally approach it with a different mind. And that may help!”

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>