Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The body's own recycling system

12.10.2012
Researchers discover "molecular emergency brake" in charge of regulating self-digestion

Times of distress literally eat away at the core of starving cells: They start to digest their own parts and recycle them for metabolic purposes. This process – called autophagy – also plays a role in immune defense. Here, it is switched on to eliminate pathogens that have invaded the body.


Ralf Höcker/HZI

Using a microscope, the researchers are able to zoom in on the cells: If autophagy proceeds undisturbed, they are able to observe little digestive bubbles, shown in red, inside of which material is being degraded (left). If the final step is blocked, autophagosomes accumulate inside the cell, shown here in green (right). The dark circular area at the center is the nucleus.

Now, Prof. Ingo Schmitz at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, together with a team of researchers, has discovered that a "molecular brake" regulates autophagy. They published their findings in the scientific journal, Cell Death & Differentiation.

Almost everything that happens inside a cell, including autophagy, is tightly regulated on a biochemical level. Like that, the cell makes sure that processes only take place when they are needed and that they are shut off when the need has expired. "Inside the cell, there exists a network of molecules. Between them, information is constantly being exchanged," says Schmitz, head of the research group “Systems-oriented Immunology and Inflammation Research” at HZI, who also holds a chair at the Otto von Guericke University in Magdeburg.

"In a way, it looks like a big city subway map." However, only the starting point and the destination of a given "cellular subway line" are relatively easy to study. To explore the different stops along the way, is more difficult. But because other lines intersect and interact with each other at these points, it is very exciting for researchers to decode all molecules involved in these signal transduction processes. It also helps them better understand diseases caused by defects in these information highways.

What exactly happens on a molecular level during the later stages of autophagy was largely unknown – until now. Schmitz and his team, along with researchers from the Otto von Guericke University Magdeburg, the Heinrich Heine University Düsseldorf, the Tübingen University, and the Temple University School of Medicine in Philadelphia, USA, have decoded one part of the molecular subway map.

Under the microscope, researchers can observe how larger-sized cellular components destined for degradation and recycling are enclosed within a small bubble, the so-called autophagosome. This structure then fuses with yet another little bubble, which digests the autophagosome's contents. "Autophagy is a survival mechanism to ensure that the cell is able to obtain the necessary nutrients during times of starvation," explains Schmitz.

For their studies, the scientists stained certain molecules and autophagosomes inside cells. This allowed them to observe microscopically which molecules are in charge of regulating the formation of the little digestive bubbles. To prompt self-digestion, they either starved the cells or simulated an infection. In the process, they discovered that the cells simultaneously also turned on autophagy-inhibiting molecules – "like some kind of emergency brake that ensures autophagy doesn't get out of control." Such negative feedback loops are not unusual for cells, they frequently help prevent overshooting reactions.

The researchers managed to identify the components of this feedback loop and found a protein called p38 to play a key role in the process. The scientists were especially surprised to observe p38 proteins on the surface of the autophagosomes. Normally, this protein is localized inside the nucleus where it gets switched on whenever the cell is under stress. On the surfaces of autophagosomes, p38 performs a very different job: It alters another molecule, called Atg5, to get it to block the final step of autophagy, involving formation of the little digestive bubble. Autophagy is inhibited, and, essentially, the cell pulls the "molecular emergency brake."

If it didn't, diseases could potentially result. As such, defective molecules of the Atg family have been implicated in the etiology of the inflammatory bowel disease, Morbus Crohn. "Looking at Atg5-deficient mice, which die of nutrient-deficiency shortly after they are born, we see just how important it is to tightly regulate autophagy," emphasizes Ralf Höcker, one of the study's first authors. As so often, it is important to find the right balance, in this case, between too much and too little self-digestion.

Original publication:
Eric Keil, Ralf Höcker, Marc Schuster, Frank Essmann, Nana Ueffing, Barbara Hoffman, Dan A. Liebermann, Klaus Pfeffer, Klaus Schulze-Osthoff, Ingo Schmitz
Phosphorylation of Atg5 by the Gadd45b-MEKK4-p38 pathway inhibits autophagy
Cell Death & Differentiation, 2012
doi:10.1038/cdd.2012.129
http://www.nature.com/cdd/journal/vaop/ncurrent/abs/cdd2012129a.html
The research group "Systems-oriented Immunology and Inflammation Research" explores the molecular processes that make immune cells tolerant to the body’s own tissues. This includes especially the cellular suicide program apoptosis.
The Helmholtz Centre for Infection Research (HZI):
The Helmholtz Centre for Infection Research contributes to the achievement of the goals of the Helmholtz Association of German Research Centres and to the successful implementation of the research strategy of the German Federal Government. The goal is to meet the challenges in infection research and make a contribution to public health with new strategies for the prevention and therapy of infectious diseases.
The Otto von Guericke University Magdeburg:
One of the Otto von Guericke University Magdeburg Medical Faculty’s research emphases is "Immunology including molecular medicine relating to inflammation". The goal is to develop new therapeutic approaches and deliver them to the patient.

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.uni-magdeburg.de
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/the_bodys_own_recycling_system/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>