Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blueprint for next generation of chronic myeloid leukemia treatment

21.08.2014

Researchers at Huntsman Cancer Institute (HCI) at the University of Utah have identified and characterized mutated forms of the gene that encodes BCR-ABL, the unregulated enzyme driving the blood cancer chronic myeloid leukemia (CML). According to the American Cancer Society, nearly 6,000 new cases of CML will be diagnosed in 2014.

Drugs already in use, called tyrosine kinase inhibitors (TKIs), target BCR-ABL and are effective at controlling the disease. They do not cure CML but control it in a way that allows patients to get back to normal life and a normal expected lifespan. Before the advent of TKIs, the five-year survival rate for CML was 30% at best; now that number is above 95%. However, 20-30% of patients with CML become resistant to one or more of the TKIs.


This is Dr. Michael Deininger, of the University of Utah and Huntsman Cancer Institute, co-senior author of a new study that identified mutated forms of a gene that encodes for an enzyme that drives chronic myeloid leukemia.

Credit: Huntsman Cancer Institute

Most cases of CML resistance result from a single mutation in BCR-ABL, and drugs to control resistance to TKI treatment caused by various single mutations have already been discovered. But BCR-ABL compound mutants that contain two mutations in the same molecule render some or all of the available TKIs ineffective.

The research team focused on BCR-ABL compound mutants observed in patients and tested them against all approved TKIs, creating a dataset that can potentially help clinicians decide which drug will be most effective for each mutation combination. They found that none of the TKIs are effective for some compound mutations, indicating the need for further research to accommodate the growing population of CML patients. The results were published online Aug. 14 in the journal Cancer Cell.

... more about:
»BCR-ABL »CML »Cancer »HCI »Health »TKI »leukemia »mutants »mutations »myeloid

"Fortunately, the problems we are studying affect a minority of CML patients, but still this leaves some patients with no good treatment option at all," said Thomas O'Hare, PhD, an HCI investigator and co-senior author of the study. He is also a research associate professor of Internal Medicine, Division of Hematology and Hematologic Malignancies. "Our goal is to have a TKI option for every patient."

"We were able to sequence about 100 clinical samples, which gave us a very large body of data to shed light on the number of compound mutations and how they develop," said Michael Deininger, MD, PhD, co-senior author of the study, a professor of Internal Medicine, and an HCI investigator. "One key finding was that compound mutations containing an already known mutation called T315I tend to confer complete resistance to all available TKIs."

Working with HCI computational chemist Nadeem Vellore, PhD, the research team modeled at the molecular level why the drugs do not bind to certain BCR-ABL compound mutants. "This puts us in position to evaluate new drug candidates and work toward developing new treatments," said O'Hare.

"Computational analysis was one of the most interesting parts of the study. It not only confirmed what we found but showed the reason behind it," said Matthew Zabriskie, BS, co-lead author of the study. "We've established what the next level of TKI resistance is going to entail."

According to O'Hare, it is only a matter of time until analogous compound mutations emerge in many other cancers, including non-small cell lung cancer (NSCLC) and acute myeloid leukemia (AML). In these diseases, scientists and clinicians are still learning how to control single mutation-based resistance. "Our findings in CML will provide a blueprint for contending with resistance in these highly aggressive diseases as well," he said.

###

In addition to Zabriskie, Deininger, and O'Hare, the study's authors included 39 other researchers representing HCI, the University of Utah, and 22 other institutions worldwide. The article was dedicated to the legacy of Professor John M. Goldman of Imperial College London, whose work and mentorship made a major mark on the field of CML. "His passing in December 2013 left a very big gap in the CML community," said Deininger.

This study was supported by the Leukemia & Lymphoma Society, the American Society of Hematology, Howard Hughes Medical Institute, Huntsman Cancer Foundation, and the National Institutes of Health/National Cancer Institute grants P30 CA042014 and R01 CA178397.

About Huntsman Cancer Institute at the University of Utah

Huntsman Cancer Institute (HCI) is one of the world's top academic research and cancer treatment centers. HCI manages the Utah Population Database - the largest genetic database in the world, with more than 16 million records linked to genealogies, health records, and vital statistics. Using this data, HCI researchers have identified cancer-causing genes, including the genes responsible for melanoma, colon and breast cancer, and paraganglioma. HCI is a member of the National Comprehensive Cancer Network (a 23-member alliance of the world's leading cancer centers) and is a National Cancer Institute-Designated Cancer Center. HCI treats patients with all forms of cancer and operates several high-risk clinics that focus on melanoma and breast, colon, and pancreas cancers. The HCI Cancer Learning Center for patient and public education contains one of the nation's largest collections of cancer-related publications. The institute is named after Jon M. Huntsman, Sr., a Utah philanthropist, industrialist, and cancer survivor.

Linda Aagard | Eurek Alert!
Further information:
http://healthcare.utah.edu/publicaffairs/

Further reports about: BCR-ABL CML Cancer HCI Health TKI leukemia mutants mutations myeloid

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>