Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue-Green Algae a Five-Tool Player in Converting Waste to Fuel

27.09.2013
In the baseball world, a superstar can do five things exceptionally well: hit, hit for power, run, throw and field.

In the parallel universe of the microbiological world, there is a current superstar species of blue-green algae that, through its powers of photosynthesis and carbon dioxide fixation, or uptake, can produce (count 'em) ethanol, hydrogen, butanol, isobutanol and potentially biodiesel. Now that’s some five-tool player.

In baseball, you call that player Willie Mays or Mike Trout. In microbiology, it goes by Synechocystis 6803, a versatile, specialized bacterium known as a cyanobacterium. It makes pikers out of plants when it comes to capturing and storing energy from photosynthesis, and it’s a natural in converting the greenhouse gas carbon dioxide (CO2) to useful chemicals that could help both tame global warming and sustain energy supply. In addition, genetically engineered Synechocystis 6803 also has the potential to make commodity chemicals and pharmaceuticals.

Granted, that’s mostly in laboratories, on the liter scale. Because of its versatility and potential, this microscopic organism is one of the most studied of its kind since it was discovered in 1968. But just as in baseball, where “can’t miss” five-tool prospects are signed yearly with great expectations and never achieve their promise, Synechocystis 6803 has yet to deliver.

Fuzhong Zhang, PhD, assistant professor of energy, environmental & chemical engineering at Washington University in St. Louis, works with Synechocystis 6803 — as well as other microbes and systems — in the areas of synthetic biology, protein engineering and metabolic engineering, with special focus on synthetic control systems to make the organism reach its untapped prowess. Zhang says the biotech world has to overcome several challenges to put the engineered microbes in the applications stage. Zhang will be in the thick of them.

“My goal is to engineer microbes and turn them into microfactories that produce useful chemicals,” Zhang says. “Synechocystis is particularly interesting because it can use CO2 as the only carbon source. Engineering this bacterium would turn the fixed CO2 into metabolites that can be further converted to fuels and other chemicals through designed biosynthetic pathways.”

Traditional chemical production requires high pressure and temperatures and literally tons of chemical solvents, but the microbial approach is very eco-friendly: Once the engineered cyanobacteria start to grow, all they need are water, basic salts and the CO2.

In an academic “scouting report” of Synechocystis, published in the August 2013 Marine Drugs, Zhang and colleagues summarize recent research and conclude that production speed has to be increased and new genetic tools must be developed to control the biochemistry inside Synechocystis so that chemical productivities will be improved to make this technology economically viable. Current industry specifications for potentially scalable chemical production are roughly 100 grams per liter of fuel or chemicals. Presently, the laboratory production is generally less than 1 gram per liter, and the efficiency is very low.

Zhang says the research community needs better tools to control gene expression. For example, promoters — little stretches of DNA before genes of interest that help control gene expression — with predictable strength are needed. They also need better cellular biosensors that can sense key metabolites and control the production of vital proteins that create the desired chemicals. And they need to engineer the organisms’ circadian rhythms (day/night) to someday produce organisms that work around the clock making a fuel or chemical. Natural Synechocystis 6803, for instance, performs a yeoman’s task of producing and storing energy molecules during the day through photosynthesis, but at night, it uses a different set of metabolisms to consume the stored energy. The natural circadian rhythm has to be rewired to make a biofuel 24 hours a day.

Zhang’s research includes developing gene expression tools, new chemical biosynthetic pathways and circadian control tools for cyanobacteria.

“I’m confident that in two or three years we will have more potent tools to engineer gene expression levels and timing, which will speed up the process more accurately and efficiently,” he says.

Also, his group has been working to develop dynamical control systems in microbes that function like meters and valves in a traditional chemical production plant – the meters calculate pressure and flow, and the valves control them.

“It’s a biological version of the valve-and-meter model to control the flow of metabolites that make the production of fuel and chemicals more efficiently,” he says.

Yu Y, You L, Liu D, Hollinshead W, Tang Y, Zhang F. Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory. Marine Drugs 2013, 11, 2894-2916; doi: 10.3390/nd11082894.

Funding for this research was provided by the National Science Foundation.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 82 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, 700 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

Neil Schoenherr | Newswise
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>