Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue-Green Algae a Five-Tool Player in Converting Waste to Fuel

27.09.2013
In the baseball world, a superstar can do five things exceptionally well: hit, hit for power, run, throw and field.

In the parallel universe of the microbiological world, there is a current superstar species of blue-green algae that, through its powers of photosynthesis and carbon dioxide fixation, or uptake, can produce (count 'em) ethanol, hydrogen, butanol, isobutanol and potentially biodiesel. Now that’s some five-tool player.

In baseball, you call that player Willie Mays or Mike Trout. In microbiology, it goes by Synechocystis 6803, a versatile, specialized bacterium known as a cyanobacterium. It makes pikers out of plants when it comes to capturing and storing energy from photosynthesis, and it’s a natural in converting the greenhouse gas carbon dioxide (CO2) to useful chemicals that could help both tame global warming and sustain energy supply. In addition, genetically engineered Synechocystis 6803 also has the potential to make commodity chemicals and pharmaceuticals.

Granted, that’s mostly in laboratories, on the liter scale. Because of its versatility and potential, this microscopic organism is one of the most studied of its kind since it was discovered in 1968. But just as in baseball, where “can’t miss” five-tool prospects are signed yearly with great expectations and never achieve their promise, Synechocystis 6803 has yet to deliver.

Fuzhong Zhang, PhD, assistant professor of energy, environmental & chemical engineering at Washington University in St. Louis, works with Synechocystis 6803 — as well as other microbes and systems — in the areas of synthetic biology, protein engineering and metabolic engineering, with special focus on synthetic control systems to make the organism reach its untapped prowess. Zhang says the biotech world has to overcome several challenges to put the engineered microbes in the applications stage. Zhang will be in the thick of them.

“My goal is to engineer microbes and turn them into microfactories that produce useful chemicals,” Zhang says. “Synechocystis is particularly interesting because it can use CO2 as the only carbon source. Engineering this bacterium would turn the fixed CO2 into metabolites that can be further converted to fuels and other chemicals through designed biosynthetic pathways.”

Traditional chemical production requires high pressure and temperatures and literally tons of chemical solvents, but the microbial approach is very eco-friendly: Once the engineered cyanobacteria start to grow, all they need are water, basic salts and the CO2.

In an academic “scouting report” of Synechocystis, published in the August 2013 Marine Drugs, Zhang and colleagues summarize recent research and conclude that production speed has to be increased and new genetic tools must be developed to control the biochemistry inside Synechocystis so that chemical productivities will be improved to make this technology economically viable. Current industry specifications for potentially scalable chemical production are roughly 100 grams per liter of fuel or chemicals. Presently, the laboratory production is generally less than 1 gram per liter, and the efficiency is very low.

Zhang says the research community needs better tools to control gene expression. For example, promoters — little stretches of DNA before genes of interest that help control gene expression — with predictable strength are needed. They also need better cellular biosensors that can sense key metabolites and control the production of vital proteins that create the desired chemicals. And they need to engineer the organisms’ circadian rhythms (day/night) to someday produce organisms that work around the clock making a fuel or chemical. Natural Synechocystis 6803, for instance, performs a yeoman’s task of producing and storing energy molecules during the day through photosynthesis, but at night, it uses a different set of metabolisms to consume the stored energy. The natural circadian rhythm has to be rewired to make a biofuel 24 hours a day.

Zhang’s research includes developing gene expression tools, new chemical biosynthetic pathways and circadian control tools for cyanobacteria.

“I’m confident that in two or three years we will have more potent tools to engineer gene expression levels and timing, which will speed up the process more accurately and efficiently,” he says.

Also, his group has been working to develop dynamical control systems in microbes that function like meters and valves in a traditional chemical production plant – the meters calculate pressure and flow, and the valves control them.

“It’s a biological version of the valve-and-meter model to control the flow of metabolites that make the production of fuel and chemicals more efficiently,” he says.

Yu Y, You L, Liu D, Hollinshead W, Tang Y, Zhang F. Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory. Marine Drugs 2013, 11, 2894-2916; doi: 10.3390/nd11082894.

Funding for this research was provided by the National Science Foundation.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 82 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, 700 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

Neil Schoenherr | Newswise
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>