Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blue Bananas

20.10.2008
Ripening bananas glow an intense blue under black light

Ripe bananas are of course yellow. However, under black light, the yellow bananas are bright blue, as discovered by scientists at the University of Innsbruck (Austria) and Columbia University (New York, USA). The team, headed by Bernhard Kräutler, reports in the journal Angewandte Chemie that the blue glow is connected to the degradation of chlorophyll that occurs during ripening. In this process, colorless but fluorescing breakdown products of chlorophyll are concentrated in the banana peel.

The usual appearance of bananas is mainly the result of carotenoids. Under normal light, these natural pigments appear yellow. Under UV light, known to partygoers as black light, ripening bananas appear blue instead. There is no difference between naturally ripened bananas and those ripened with the use of ethylene gas. Green, unripe bananas do not fluoresce. The intensity of the luminescence correlates with the breakdown of the green pigment chlorophyll. As the ripening continues to progress, the blue glow decreases. “Surprisingly, this blue luminescence apparently has been entirely overlooked,” says Kräutler.

By means of various spectroscopic techniques, the team analyzed the structure of the main breakdown products. In doing this, they identified a propionate ester group, a modification never seen before in a chlorophyll breakdown product. This group has a stabilizing effect and could explain the unusually long duration of the fluorescing intermediates in bananas. Fluorescing chlorophyll catabolytes have otherwise only been found as short-lived intermediate products in higher plants.

Why does the breakdown of chlorophyll occur differently in bananas than in other higher plants, including even banana leaves? Kräutler suggests two different explanations: “In contrast to humans, many of the animals that eat bananas can see light in the UV range. The blue luminescence of the banana fruit could give them a distinct signal that the fruit is ripe.” Or perhaps the chlorophyll degradation products also serve a biological function for the banana. The amazingly stable catabolytes could help to prolong the viability of the ripening fruit.

Author: Bernhard Kräutler, University of Innsbruck (Austria), http://www.uibk.ac.at/organic/de/

Title: Blue Luminescence of Ripening Bananas

Angewandte Chemie International Edition 2008, 47, No. 46, doi: 10.1002/anie.200803189

Bernhard Kräutler | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.uibk.ac.at/organic/de/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Chances to treat childhood dementia

24.07.2017 | Health and Medicine

Improved Performance thanks to Reduced Weight

24.07.2017 | Automotive Engineering

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>