Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blowfly maggots provide physical evidence for forensic cases

02.09.2014

Evidence collected from blowfly maggots could help in the investigation in murder cases.

Estimation of the post mortem interval (PMI) is one of the most crucial matters in autopsies and entomological specimens have been widely used to determine PMI after 72 hours of death. This is done using the oldest blowfly larvae found and from the succession pattern of insects that colonize the dead remains. Thus, the use of blowflies in forensic cases are crucial.


Chrysomya megacephala - a common blowfly in Malaysia

The most common blowflies in Malaysia are Chrysomya megacephala and Aechotandrus rufifacies. Blowflies arrive and deposit their eggs on a dead body within minutes of death occuring as the odour released from the carcass attracts them.

The eggs then grow to feeding larvae, which feed on the dead remains until they reach maturity. Larvae that feed on the tissues of an individual who took drugs or was poisoned will ingest these substances as well as their metabolites, proving that the drugs had accumulated in the body.

Some criminal cases involve the use of firearms. The forensic investigation of such cases requires physical evidence to be collected at the scene of the crime. In extreme conditions, when the bullet case is not found and the dead body is actively decomposing, blowfly maggots obtained from the dead remains hold potential clues in aiding the forensic investigation.

Our laboratory studied the presence of several different types of toxins, including malathion, paraquat, gasoline, paracetamol and ketum extracts, along with gunshot residue (GSR), to determine the effects of these toxins and GSR in the development rates of the blowfly species, Chrysomya megacephala and Aechotandrus rufifacies. Our aim was to determine whether the presence of toxins may affect the estimation of PMI. We were also exploring the potential of blowfly samples to be applied in forensic investigations for detecting toxins and GSR.

Our results showed that the presence of malathion, paraquat, gasoline, paracetamol, ketum extracts and GSR affected the development rates of blowflies. In real intoxication and shooting cases involving decomposed remains, estimation of the correct PMI using larvae samples should consider the delayed and accelerated duration on the development of the blowflies. We also found the presence of active components of toxins in the blowfly samples we studied, proving the potential of blowfly samples to be tested in investigations to identify toxins in the victim’s body.

In conclusion, the blowfly species, C. megacephala and A. rufifacies, can provide crucial and important physical evidence in forensic investigations.

For further information contact

Rumiza Abd Rashid
Faculty of Applied Science
University Teknologi MARA
Malaysia
Email: rumiza9550@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: Teknologi UiTM drugs eggs evidence forensic gasoline investigations larvae malathion species toxins

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>