Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The blossoms of maturity

24.08.2009
A newly discovered signaling pathway ensures that plants remember to flower -- even without positive signals from the environment

Why do some plants blossom even when days are short and gray? Scientists at the Max Planck Institute for Developmental Biology have found the answer to this question: An endogenous mechanism allows them to flower in the absence of external influences such as long days. A small piece of RNA, a so-called microRNA, has a central role in this process, as a decline of its concentration in the shoot apex triggers flowering.

MicroRNAs are very short RNA snippets that have emerged in recent years as essential regulators of gene function in both plants and animals. By binding to complementary motifs in a messenger RNA, they inhibit its translation into protein. This process thus blunts the activity of the corresponding gene.

In Tübingen, developmental biologists have discovered that the common wallcress, Arabidopsis, uses this regulatory mechanism to switch from vegetative to reproductive development. A group of related regulators, the SPL proteins, play an important role in promoting the onset of flowering. In young plants, production of SPL proteins is prevented by high levels of microRNA156. Jia-Wei Wang and colleagues demonstrate that independent of external cues, the concentration of the microRNA declines over time, like sand running through an hourglass. When the microRNA concentration falls below a certain level, enough SPL proteins are produced to activate the flowering process even in the absence of other regulators that measure day length or external temperature. This in turns allows a sufficiently old plant to flower, even in an unfavorable environment.

Interestingly, the SPLs do double duty, since they have supporting roles when plants flower in response to long days. Furthermore, both the SPLs and other regulators eventually converge on a similar set of targets crucial for flowering. „Flowering is crucial for the long-term survival of plants. The redundancy of environment-dependent and –independent mechanisms ensures that plants do not wait forever until flowering. Better flower once, then never", explains Detlef Weigel, director at the Max Planck Institute for Developmental Biology.

Dr. Susanne Diederich | EurekAlert!
Further information:
http://www.tuebingen.mpg.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>