Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood vessel cells are instructed to form tube-like structures

01.09.2008
How do blood vessel cells understand that they should organise themselves in tubes and not in layers?

A research group from Uppsala University shows for the first time that a special type of “instructor” molecule is needed to accomplish this. These findings, published in the scientific journal Blood, might be an important step towards using stem cells to build new organs.

In order for a body to develop and function the cells in the body must be able to organise themselves in relation to each other. The way in which cells are arranged depends on the organ where they are located. Blood vessel cells need to form three-dimensional, tube-like structures that can transport blood. But how do blood vessel cells know that they should do that? An important part of the communication between cells and their environment is the use of growth factors. These are proteins that bind to receptors on the surface of the cell that receives the information. When the receptor in turn forms a complex with other proteins, on the inside of the cell, the read-out from the DNA can be altered. The information has “arrived”.

VEGF (vascular endothelial growth factor) is a family of closely related growth factors that control blood vessel cells throughout life. Blood vessel development in the foetus as well as later in life, for example during wound healing, is regulated by VEGF. In the present study the research group has examined how VEGF can instruct blood vessel cells to arrange themselves into a tube. The answer is that some variants of VEGF have the ability to attract another protein, an instructor molecule, which is joined together with VEGF and its reeptor. The combination of instructor molecule, VEGF and receptor results in that a specific signal is sent inside the blood vessel cells, making them form a tube. Without the instructor molecule the cells line up next to each other, in a layer.

These results may become very useful. Today stem cells are used to create new cells, organs and even tissues, that in the future might be used to for transplantation instead of donated organs. If a patient’s own stem cells are used the problem with organ rejection is avoided. But so far there has been a challenge to create three-dimensional structures from stem cells.

Our contribution can make it possible to create blood vessels from stem cells and to direct them to form a tube instead of a layer. Perhaps this knowledge can be transferred to the formation of other tube-like structures in the body, such as the lung and intestines. The perspectives for the future are very exciting, says Lena Claesson-Welsh, who has led the study.

More information:
Kerstin Henriksson
+46 18 471 48 27, +46 70 386 26 88,
kerstin.henriksson@genpat.uu.se or
Lena Welsh (at present in the US) on lena.welsh@genpat.uu.se

Anneli Waara | alfa
Further information:
http://www.uadm.uu.se
http://bloodjournal.hematologylibrary.org/cgi/content/abstract/blood-2007-12-125856v1

Further reports about: DNA Molecule Tube VEGF blood blood vessel factor instructor molecule stem cells structures tube-like structures

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>