Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood Test Instead of Biopsy Identifies Liver Damage

30.01.2012
Siemens is marketing the first rapid, automated biomarker test for diagnosing and assessing liver fibrosis.

The ELF test (Enhanced Liver Fibrosis test) takes approximately one hour to complete and requires only a blood sample. The process is therefore less invasive but just as reliable as the previously required biopsy, and it usually takes about a week to deliver a biopsy result.


The new test was developed by Siemens Healthcare in collaboration with University College London and can be used as a routine test on the Siemens ADVIA Centaur Immunoassay System.

Liver fibrosis is the result of chronic liver damage caused by vi-ral hepatitis, alcoholic cirrhosis, or fatty liver disease. It is characterized by scarring of the liver tissue, which can lead to cirrhosis or cancer of the liver over the long term — a frequent cause of death worldwide.

At present, the “gold standard” for assessing the severity of a liver fibrosis is a liver biopsy, which involves the removal of a small amount of liver tissue. This biopsy has drawbacks, however: It is painful; it entails some risk for the patient; and it tests only a small sample of the liver.

... more about:
»ADVIA »algorithm »biopsy »blood flow »blood test »liver

With the automated ADVIA Centaur ELF Test, a fast and mini-mally invasive technique is now available for determining both the severity of a liver fibrosis and the risk that it will worsen. The test examines three direct blood serum biomarkers: hyaluronic acid (HA), procollagen III N-terminal propeptide (PIIINP), and the tissue inhibitor of metalloproteinase 1 (TIMP-1). These direct biomarkers are molecules that are involved in the formation of fibrosis. In the test, special reagents react with the biomarkers and generate light in the process. The greater the intensity of this chemiluminescence, the greater the presence of the biomarker.

A special algorithm is used to convert the results of the three biomarkers into the ELF score, which indicates the degree of fibrosis. The combination of three biomarkers increases the accuracy of the test. As an international clinical trial has shown, the ELF test can precisely differentiate between slight, moderate, and serious cases of fibrosis. In the event of slight or moderate fibrosis, patients normally have no symptoms. Doctors can thus intervene before significant damage to the liver and monitor the progress of therapy.

To complement the ELF test, Siemens is also offering imaging and laboratory diagnostic technologies like hepatitis blood tests and ultrasound systems that help physicians identify liver fibrosis at an early stage and monitor its development.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: ADVIA algorithm biopsy blood flow blood test liver

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>