Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood and lymphatic capillaries grown for the first time in the lab

30.01.2014
Researchers at the University Children’s Hospital Zurich and the University of Zurich have engineered skin cells for the very first time containing blood and lymphatic capillaries. They succeeded in isolating all the necessary types of skin cells from human skin tissue and engineering a skin graft that is similar to full-thickness skin.

Every year around 11 million people suffer severe burns. The resulting large, deep wounds caused by burning only heal slowly; this results in lifelong scars. What is needed to reduce this kind of scarring is the grafting of functional full-thickness skin.

Only a very limited area of skin can be removed from the individual patient as the surgery, in turn, creates new wounds. Besides conventional skin grafting, another option is to engineer a skin graft in the lab which firstly is composed of the patient’s cells and secondly is very similar to natural human skin.

Up to now these complex skin grafts didn’t contain any blood or lymphatic capillaries, pigmentation, sebaceous glands, hair follicles or nerves. The researchers at the Tissue Biology Research Unit, the research department of the Surgical Clinic and at the Research Centre for Children at the University Children’s Hospital Zurich have been engineering dermo-epidermal skin grafts for some time but now they have succeeded in constructing a more complex organ. “We were able to isolate all the necessary skin cells from a human skin sample and to engineer a skin graft similar to full-thickness skin that contains for the first time blood and lymphatic capillaries too”, says Martin Meuli, Head of the Surgical Clinic at the University Children’s Hospital Zurich.

Fully functional lymphatic capillaries generated for the first time
Tissue fluid is excreted from a wound which accumulates in a cavity on the skin’s surface and can impede wound healing. Lymphatic vessels drain off this fluid. The researchers isolated lymphatic capillary cells from the human dermis. Together with the blood capillaries that were also engineered, this guarantees rapid, efficient vesicular supply of the skin graft. Up to now, this had been a major unsolved problem in molecular tissue biology and regenerative medicine.

The scientists in the team of Ernst Reichmann, Head of the Tissue Biology Research Unit, were surprised by three findings. The individual lymphatic cells spontaneously arranged themselves into lymphatic capillaries with all the characteristics of lymphatic vessels. In preclinical trials both the human lymphatic capillaries and the blood capillaries engineered in the laboratory connected with those of the laboratory animals. “What’s novel is that the lymphatic capillaries collected and transported tissue fluid; hence they were functional”, explains Ernst Reichmann and goes on to add, “We assume that skin grafts with lymphatic and blood capillaries will, in future, both prevent the accumulation of tissue fluid and ensure rapid blood supply of the graft”. This could markedly improve the healing process and the typical organ structure of this type of skin graft.

The first clinical application of these complex skin grafts is scheduled for 2014. They will not, however, contain any blood or lymphatic capillaries as approval has still to be obtained.

Literature:
Daniela Marino, Joachim Luginbühl, Simonetta Scola, Martin Meuli, Ernst Reichmann. Bioengineering Dermo-Epidermal Skin Grafts with Blood and Lymphatic Capillaries. Science Translational Medicine. January 29, 2104. DOI: 10.1126/scitranslmed.3006894

www.skingineering.ch

Contacts:
Professor Martin Meuli
Head Surgical Clinic
University Children’s Hospital Zurich
Tel. +41 44 266 80 23
Email: martin.meuli@kispi.uzh.ch
Professor Ernst Reichmann
Head Tissue Biology Research Unit
University Children’s Hospital Zurich
Tel. +41 44 6348911
Email: Ernst.Reichmann@kispi.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>