Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood and lymphatic capillaries grown for the first time in the lab

30.01.2014
Researchers at the University Children’s Hospital Zurich and the University of Zurich have engineered skin cells for the very first time containing blood and lymphatic capillaries. They succeeded in isolating all the necessary types of skin cells from human skin tissue and engineering a skin graft that is similar to full-thickness skin.

Every year around 11 million people suffer severe burns. The resulting large, deep wounds caused by burning only heal slowly; this results in lifelong scars. What is needed to reduce this kind of scarring is the grafting of functional full-thickness skin.

Only a very limited area of skin can be removed from the individual patient as the surgery, in turn, creates new wounds. Besides conventional skin grafting, another option is to engineer a skin graft in the lab which firstly is composed of the patient’s cells and secondly is very similar to natural human skin.

Up to now these complex skin grafts didn’t contain any blood or lymphatic capillaries, pigmentation, sebaceous glands, hair follicles or nerves. The researchers at the Tissue Biology Research Unit, the research department of the Surgical Clinic and at the Research Centre for Children at the University Children’s Hospital Zurich have been engineering dermo-epidermal skin grafts for some time but now they have succeeded in constructing a more complex organ. “We were able to isolate all the necessary skin cells from a human skin sample and to engineer a skin graft similar to full-thickness skin that contains for the first time blood and lymphatic capillaries too”, says Martin Meuli, Head of the Surgical Clinic at the University Children’s Hospital Zurich.

Fully functional lymphatic capillaries generated for the first time
Tissue fluid is excreted from a wound which accumulates in a cavity on the skin’s surface and can impede wound healing. Lymphatic vessels drain off this fluid. The researchers isolated lymphatic capillary cells from the human dermis. Together with the blood capillaries that were also engineered, this guarantees rapid, efficient vesicular supply of the skin graft. Up to now, this had been a major unsolved problem in molecular tissue biology and regenerative medicine.

The scientists in the team of Ernst Reichmann, Head of the Tissue Biology Research Unit, were surprised by three findings. The individual lymphatic cells spontaneously arranged themselves into lymphatic capillaries with all the characteristics of lymphatic vessels. In preclinical trials both the human lymphatic capillaries and the blood capillaries engineered in the laboratory connected with those of the laboratory animals. “What’s novel is that the lymphatic capillaries collected and transported tissue fluid; hence they were functional”, explains Ernst Reichmann and goes on to add, “We assume that skin grafts with lymphatic and blood capillaries will, in future, both prevent the accumulation of tissue fluid and ensure rapid blood supply of the graft”. This could markedly improve the healing process and the typical organ structure of this type of skin graft.

The first clinical application of these complex skin grafts is scheduled for 2014. They will not, however, contain any blood or lymphatic capillaries as approval has still to be obtained.

Literature:
Daniela Marino, Joachim Luginbühl, Simonetta Scola, Martin Meuli, Ernst Reichmann. Bioengineering Dermo-Epidermal Skin Grafts with Blood and Lymphatic Capillaries. Science Translational Medicine. January 29, 2104. DOI: 10.1126/scitranslmed.3006894

www.skingineering.ch

Contacts:
Professor Martin Meuli
Head Surgical Clinic
University Children’s Hospital Zurich
Tel. +41 44 266 80 23
Email: martin.meuli@kispi.uzh.ch
Professor Ernst Reichmann
Head Tissue Biology Research Unit
University Children’s Hospital Zurich
Tel. +41 44 6348911
Email: Ernst.Reichmann@kispi.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>