Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood and lymphatic capillaries grown for the first time in the lab

30.01.2014
Researchers at the University Children’s Hospital Zurich and the University of Zurich have engineered skin cells for the very first time containing blood and lymphatic capillaries. They succeeded in isolating all the necessary types of skin cells from human skin tissue and engineering a skin graft that is similar to full-thickness skin.

Every year around 11 million people suffer severe burns. The resulting large, deep wounds caused by burning only heal slowly; this results in lifelong scars. What is needed to reduce this kind of scarring is the grafting of functional full-thickness skin.

Only a very limited area of skin can be removed from the individual patient as the surgery, in turn, creates new wounds. Besides conventional skin grafting, another option is to engineer a skin graft in the lab which firstly is composed of the patient’s cells and secondly is very similar to natural human skin.

Up to now these complex skin grafts didn’t contain any blood or lymphatic capillaries, pigmentation, sebaceous glands, hair follicles or nerves. The researchers at the Tissue Biology Research Unit, the research department of the Surgical Clinic and at the Research Centre for Children at the University Children’s Hospital Zurich have been engineering dermo-epidermal skin grafts for some time but now they have succeeded in constructing a more complex organ. “We were able to isolate all the necessary skin cells from a human skin sample and to engineer a skin graft similar to full-thickness skin that contains for the first time blood and lymphatic capillaries too”, says Martin Meuli, Head of the Surgical Clinic at the University Children’s Hospital Zurich.

Fully functional lymphatic capillaries generated for the first time
Tissue fluid is excreted from a wound which accumulates in a cavity on the skin’s surface and can impede wound healing. Lymphatic vessels drain off this fluid. The researchers isolated lymphatic capillary cells from the human dermis. Together with the blood capillaries that were also engineered, this guarantees rapid, efficient vesicular supply of the skin graft. Up to now, this had been a major unsolved problem in molecular tissue biology and regenerative medicine.

The scientists in the team of Ernst Reichmann, Head of the Tissue Biology Research Unit, were surprised by three findings. The individual lymphatic cells spontaneously arranged themselves into lymphatic capillaries with all the characteristics of lymphatic vessels. In preclinical trials both the human lymphatic capillaries and the blood capillaries engineered in the laboratory connected with those of the laboratory animals. “What’s novel is that the lymphatic capillaries collected and transported tissue fluid; hence they were functional”, explains Ernst Reichmann and goes on to add, “We assume that skin grafts with lymphatic and blood capillaries will, in future, both prevent the accumulation of tissue fluid and ensure rapid blood supply of the graft”. This could markedly improve the healing process and the typical organ structure of this type of skin graft.

The first clinical application of these complex skin grafts is scheduled for 2014. They will not, however, contain any blood or lymphatic capillaries as approval has still to be obtained.

Literature:
Daniela Marino, Joachim Luginbühl, Simonetta Scola, Martin Meuli, Ernst Reichmann. Bioengineering Dermo-Epidermal Skin Grafts with Blood and Lymphatic Capillaries. Science Translational Medicine. January 29, 2104. DOI: 10.1126/scitranslmed.3006894

www.skingineering.ch

Contacts:
Professor Martin Meuli
Head Surgical Clinic
University Children’s Hospital Zurich
Tel. +41 44 266 80 23
Email: martin.meuli@kispi.uzh.ch
Professor Ernst Reichmann
Head Tissue Biology Research Unit
University Children’s Hospital Zurich
Tel. +41 44 6348911
Email: Ernst.Reichmann@kispi.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch

More articles from Life Sciences:

nachricht Scientists discover genetic switch that can prevent peripheral vascular disease in mice
29.07.2014 | University of Texas Health Science Center at Houston

nachricht Mineral magic? Common mineral capable of making and breaking bonds
29.07.2014 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Counting down to FEBS-EMBO 2014 in Paris, France

29.07.2014 | Event News

9th European Wood-Based Panel Symposium 2014 – meeting point for the wood-based material branch

24.07.2014 | Event News

“Lens on Life” - Artists and Scientists Explore Cell Divison

08.07.2014 | Event News

 
Latest News

Scientists discover genetic switch that can prevent peripheral vascular disease in mice

29.07.2014 | Life Sciences

From Finding Nemo to minerals – what riches lie in the deep sea?

29.07.2014 | Earth Sciences

Physicists unlock nature of high-temperature superconductivity

29.07.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>