Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood-clotting protein linked to cancer and septicaemia

04.02.2011
Research could lead to new therapies

In our not-so-distant evolutionary past, stress often meant imminent danger, and the risk of blood loss, so part of our body’s stress response is to stock-pile blood-clotting factors.

Scientists in the Molecular Medicine Partnership Unit (MMPU), a collaboration between the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the University of Heidelberg Medical Centre, have discovered how stressed cells boost the production of the key blood-clotting factor, thrombin.

Their work, published today in Molecular Cell, shows how cancer cells may be taking advantage of this process, and opens new possibilities for fighting back, not only against cancer but also against septicaemia, where increased blood clotting is still one of the leading causes of death.

Blood clots tend to form more often in the veins of people with cancer, a syndrome first described almost 150 years ago by French physician Armand Trousseau. In recent years, doctors have also come to realise that people with activated blood coagulation are more likely to develop cancer. Accordingly, recent studies have shown that anti-coagulants may help treat and prevent cancer, but exactly how blood-clotting and cancer progression are linked was unclear – until now.

“For the 1st time, we have something in hand that might explain this enigmatic relationship between enhanced pro-coagulatory activities and the outcome of cancer,” says Sven Danckwardt, who carried out the research within the MMPU.

The amount of thrombin our cells produce is controlled by two sets of proteins: proteins that slow thrombin production, and proteins that speed it up. Both types of protein act by binding to the cellular machinery that synthesises thrombin, and, under normal conditions, the production-slowing proteins keep thrombin levels low. But Danckwardt and colleagues discovered that, when our cells come under stress from inflammation, another protein, called p38 MAPK, reacts by adding a chemical tag to those production-slowing proteins. That tag makes it harder for the production-slowing proteins to bind to the thrombin-synthesising machinery, allowing the proteins that speed up production to take over. So inflammation caused by cancer could lead to increased thrombin levels and, as thrombin is a blood-clotting agent, this could explain why cancer patients are more likely to suffer from blood-clots. The scientists believe this new mechanism of gene regulation may apply to other genes, too.

“Knowing the exact molecules involved, and how they act, has implications for treatment, especially as drugs that inhibit p38 MAPK are already being tested in clinical studies for other conditions,” says Matthias Hentze, Associate Director of EMBL and co-director of MMPU, adding: “those drugs could be good candidates for potential cancer or septicaemia therapies.”

The Heidelberg scientists found that p38 MAPK also influences thrombin production during septicaemia. Also known as blood poisoning, septicaemia occurs when bacteria or other pathogens enter the bloodstream, leading to widespread infection and to blood-clotting problems. When they analysed liver samples taken from septicaemic mice and from cancer patients, the scientists discovered that thrombin production increases in response both to widespread inflammation during septicaemia and to localized inflammation at the tumour’s invasion front, where cancer cells are spreading into nearby tissue.

Aside from its role as a blood-clotting agent, thrombin is also involved in creating new blood vessels, and it is able to degrade the extracellular matrix that keeps cells together. So it’s possible that the cancer cells are increasing thrombin production to help the tumour spread, by making it easier to invade healthy tissue and creating blood vessels to supply the new tumour cells. This, the researchers believe, could explain why people with blood-clotting problems seem to have a higher risk of developing cancer.

“This study shows the benefits of partnerships like the MMPU, which bridge the gap between clinical and basic research,” Andreas Kulozik from the University of Heidelberg Medical Centre, co-director of MMPU, concludes.

Policy regarding use
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Sonia Furtado
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>