Blood 'fingerprints' for cancer

miRNAs are a class of naturally occurring small non-coding RNAs that have been linked with cancer development. Recent studies reporting individual miRNAs as diagnostic biomarkers of specific cancers were unable to rule out the possibility that these miRNAs appeared as a result of contamination.

Chen-Yu Zhang and colleagues are the first to comprehensively characterize entire blood miRNA profiles of healthy subjects and patients with lung cancer, colorectal cancer and diabetes, ruling out contamination. They propose that the specific serum miRNA expression profiles they identified constitute ‘fingerprints’ for cancer and disease.

Although tumour markers greatly improve diagnosis, current diagnostic techniques are prohibitively invasive and therefore have limited clinical application. The new approach is non-invasive and has the potential to transform the clinical management of various cancers and diseases through improving disease diagnosis, cancer classification, prognosis estimation, prediction of therapeutic efficacy, maintenance of surveillance following surgery, and the ability to forecast disease recurrence.

The new technique will also be useful to pharmacological companies in identifying population subgroups who are responsive to drugs that have failed in phase III clinical trials.

Media Contact

Chen-Yu Zhang EurekAlert!

More Information:

http://www.nju.edu.cn

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors