Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking tumor-associated macrophages decreased glioblastoma's growth & extended survival in mice

16.12.2013
Rates of programmed cell death higher in mice treated with experimental drug than in untreated animals with same cancer

An experimental drug that targets macrophages, a type of immune cells, in the microenvironment surrounding the lethal brain tumor glioblastoma multiforme decreased the cancer's growth and extended survival of laboratory mice with the cancer, scientists will report on Tuesday Dec. 17, at the American Society for Cell Biology (ASCB) annual meeting in New Orleans.

The rates of apoptosis, or programmed cell death, were higher in the mice treated with the experimental agent than in the untreated animals that also had high-grade glioblastomas, said Johanna Joyce, Ph.D., of the Memorial Sloan-Kettering Cancer Center (MSKCC) in New York City. As a result, the drug-treated laboratory mice survived many months longer than the untreated animals with the same cancer.

The experimental drug blocks cell receptors for colony-stimulating factor-1 (CSF-1R), which is essential to the differentiation and survival of tumor-associated macrophages and microglia (TAMS), which are the brain's front-line immune defense cells. The microenvironment that surrounds brain tumors contains many macrophages with this receptor.

Glioblastoma multiforme (GBM) is the most common and the most deadly adult primary brain tumor, with an average survival of just 14 months following diagnosis. Even with aggressive treatment by surgery, radiation and chemotherapy, most therapeutic approaches targeting the glioma cells in GBM fail.

Faced with this bleak picture, Dr. Joyce and colleagues MSKCC looked for an alternative strategy and turned to the cancer's cellular neighbors, the non-tumor cells that are part of the glioma microenvironment. In particular, they zeroed in on tumor-associated macrophages and TAMs.

When Dr. Joyce's lab used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse model of GBM, the treated mice survived many months longer than the control cohort. Their established, high-grade gliomas regressed in proliferation and malignancy, even though the glioma cells themselves were not the targets of the CSF-1R treatment.

With the TAMs blockaded by CSF-1 inhibitors, it was the tumor cells that showed increased rates of apoptosis. The TAMs were not even depleted in the treated mice, despite the drug blockade of their growth factor. Instead the TAMs survived by responding to growth factors secreted by the gliomas, including GM-CSF and IFN-ã, according to Dr. Joyce.

The MSKCC researchers also found that tumor spheres, freshly isolated from glioma patients in the surgery department at MSKCC, responded to the drug when implanted in animals. The CSF-1R blockade slowed intracranial growth in the patient-derived glioma xenografts.

Because GBM is the most common glioma, its genome was the first to be sequenced for the Cancer Genome Atlas, which parsed GBM into four genetic subtypes: proneural, neural, classical and mesenchymal. The mice used in Dr. Joyce's lab experiments model the proneural GBM subtype. All forms of GBM have a 2- to 3-person per 100,000 incidence rate in the U.S. and Europe, according to the National Brain Tumor Society. Because of its highly invasive phenotype, GBM is almost impossible to resect completely in surgery. Drug and radiation treatments are the standard follow-ups.

Dr. Joyce says that these new results, which were first reported only two months ago in Nature Medicine, http://www.ncbi.nlm.nih.gov/pubmed/24056773, are encouraging for planned clinical trials of CSF-1R inhibitors in combination with radiation therapy in glioma patients.

"We are optimistic that CSF-1R inhibitors may provide a more effective therapy than current treatments for the disease management of glioma patients," Dr. Joyce said.

CONTACT:

Johanna Joyce, Ph.D.
Memorial Sloan-Kettering Cancer Center
New York, NY
646-888-2048
JoyceJ@mskcc.org
ASCB PRESS CONTACTS:
John Fleischman
jfleischman@ascb.org
513-706-0212
Cathy Yarbrough
Cyarbrough@ascb.org
858-243-1814
Author will present, "CSF-1R inhibition alters macrophage polarization and blocks glioma progression," Tuesday, Dec. 17, during the 3:50 to 4:10 p.m. mini-symposium titled, "Tumor Microenvironment as a Driver and Target in Cancer Progression."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>