Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking tumor-associated macrophages decreased glioblastoma's growth & extended survival in mice

16.12.2013
Rates of programmed cell death higher in mice treated with experimental drug than in untreated animals with same cancer

An experimental drug that targets macrophages, a type of immune cells, in the microenvironment surrounding the lethal brain tumor glioblastoma multiforme decreased the cancer's growth and extended survival of laboratory mice with the cancer, scientists will report on Tuesday Dec. 17, at the American Society for Cell Biology (ASCB) annual meeting in New Orleans.

The rates of apoptosis, or programmed cell death, were higher in the mice treated with the experimental agent than in the untreated animals that also had high-grade glioblastomas, said Johanna Joyce, Ph.D., of the Memorial Sloan-Kettering Cancer Center (MSKCC) in New York City. As a result, the drug-treated laboratory mice survived many months longer than the untreated animals with the same cancer.

The experimental drug blocks cell receptors for colony-stimulating factor-1 (CSF-1R), which is essential to the differentiation and survival of tumor-associated macrophages and microglia (TAMS), which are the brain's front-line immune defense cells. The microenvironment that surrounds brain tumors contains many macrophages with this receptor.

Glioblastoma multiforme (GBM) is the most common and the most deadly adult primary brain tumor, with an average survival of just 14 months following diagnosis. Even with aggressive treatment by surgery, radiation and chemotherapy, most therapeutic approaches targeting the glioma cells in GBM fail.

Faced with this bleak picture, Dr. Joyce and colleagues MSKCC looked for an alternative strategy and turned to the cancer's cellular neighbors, the non-tumor cells that are part of the glioma microenvironment. In particular, they zeroed in on tumor-associated macrophages and TAMs.

When Dr. Joyce's lab used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse model of GBM, the treated mice survived many months longer than the control cohort. Their established, high-grade gliomas regressed in proliferation and malignancy, even though the glioma cells themselves were not the targets of the CSF-1R treatment.

With the TAMs blockaded by CSF-1 inhibitors, it was the tumor cells that showed increased rates of apoptosis. The TAMs were not even depleted in the treated mice, despite the drug blockade of their growth factor. Instead the TAMs survived by responding to growth factors secreted by the gliomas, including GM-CSF and IFN-ã, according to Dr. Joyce.

The MSKCC researchers also found that tumor spheres, freshly isolated from glioma patients in the surgery department at MSKCC, responded to the drug when implanted in animals. The CSF-1R blockade slowed intracranial growth in the patient-derived glioma xenografts.

Because GBM is the most common glioma, its genome was the first to be sequenced for the Cancer Genome Atlas, which parsed GBM into four genetic subtypes: proneural, neural, classical and mesenchymal. The mice used in Dr. Joyce's lab experiments model the proneural GBM subtype. All forms of GBM have a 2- to 3-person per 100,000 incidence rate in the U.S. and Europe, according to the National Brain Tumor Society. Because of its highly invasive phenotype, GBM is almost impossible to resect completely in surgery. Drug and radiation treatments are the standard follow-ups.

Dr. Joyce says that these new results, which were first reported only two months ago in Nature Medicine, http://www.ncbi.nlm.nih.gov/pubmed/24056773, are encouraging for planned clinical trials of CSF-1R inhibitors in combination with radiation therapy in glioma patients.

"We are optimistic that CSF-1R inhibitors may provide a more effective therapy than current treatments for the disease management of glioma patients," Dr. Joyce said.

CONTACT:

Johanna Joyce, Ph.D.
Memorial Sloan-Kettering Cancer Center
New York, NY
646-888-2048
JoyceJ@mskcc.org
ASCB PRESS CONTACTS:
John Fleischman
jfleischman@ascb.org
513-706-0212
Cathy Yarbrough
Cyarbrough@ascb.org
858-243-1814
Author will present, "CSF-1R inhibition alters macrophage polarization and blocks glioma progression," Tuesday, Dec. 17, during the 3:50 to 4:10 p.m. mini-symposium titled, "Tumor Microenvironment as a Driver and Target in Cancer Progression."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>