Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking an oncogene in liver cancer could be potential therapy option

13.10.2010
Scientists have found that a synthetic molecule they designed can block activation of a gene in liver cancer cells, halting a process that allows some of those cancer cells to survive chemotherapy.

Without the interference of this gene’s function, certain liver cancer cells appear to be protected from the toxic effects of chemotherapy drugs.

Blocking the oncogene, called STAT3, prevents a protein from protecting the cells, the research suggests. As a result, more liver cancer cells succumb to treatment.

Researchers hope an anti-cancer drug based on the molecule’s design eventually will be developed for use in patients, after the required animal and clinical testing is completed.

The scientists have seen similar results in studies using this experimental molecule, called LLL12, to block STAT3 as a way to induce cell death in breast and pancreatic cancer cells.

“For patients, it would be easy to use an intravenous drug based on this small molecule, which is relatively cheap and easy to manufacture,” said Jiayuh Lin, senior author of the study and an associate professor of pediatrics at Ohio State University.

“We also have seen signs that blocking STAT3 could block other downstream targets, and could affect other STAT3-regulated genes that can turn normal cells into cancer cells. We believe this molecule has a lot of potential for cancer therapy.”

Lin led the team of scientists who designed LLL12 using powerful computers and a computational method called structure-based design. The group reported on its creation earlier this year.

This new study is published in a recent issue of the Journal of Biological Chemistry.

The protein in this process is called interleukin-6, or IL-6. It is a cytokine, a chemical messenger that causes inflammation, and can have both beneficial and damaging effects in the body. Previous research by other scientists has shown that high levels of IL-6 in the blood are associated with hepatocellular carcinoma, the most common type of liver cancer.

The fifth most common cancer in humans, liver cancer remains one of the most difficult to successfully treat. Patients’ overall five-year survival rate is about 10 percent, according to the American Cancer Society.

In this study, the researchers observed that liver cancer cells known to be resistant to a common chemotherapy drug, doxorubicin, had higher levels of IL-6 than did other liver cancer cells – an indication that the protein likely fosters the drug resistance. Subsequent tests showed that these resistant cells with high IL-6 also had higher levels of STAT3 phosphorylation than did other cells.

To further demonstrate this relationship between the protein and cell survival, Lin and colleagues pretreated liver cancer cells with the chemotherapy drug and then followed with different doses of IL-6. The addition of IL-6 rescued these cells from chemo-induced death.

Alternately, when the scientists introduced an antibody to inhibit IL-6 in drug-resistant cancer cells and then followed with doses of doxorubicin, 70 percent more of the cells treated with the IL-6 inhibitor died compared to cells treated with the chemo drug alone – a sign that the loss of IL-6 lowers survival in these particular cancer cells.

After determining in cell cultures that IL-6 activates STAT3 to help perform this cell survival function, the researchers focused on testing the effects of blocking the gene alone.

They first used silencing RNA, or siRNA, to prevent activation of the STAT3. More of the siRNA-treated cells died than did cells in which the STAT3 was not blocked.

“At this point, we know that STAT3 plays an important role, and that IL-6 depends on STAT3 to protect cells from dying,” said Lin, also an investigator in Ohio State’s Comprehensive Cancer Center and the Center for Childhood Cancer at Nationwide Children’s Hospital.

The scientists then turned to the synthetic molecule, LLL12, which was designed specifically to tuck itself into a gap in STAT3’s two-part structure and disable its activation.

The researchers introduced LLL12 to four types of liver cancer cells and followed with a dose of IL-6. The IL-6 protein had no protective effect on cells treated with the molecule, meaning it could not turn on STAT3, a required step in protecting the cells from death.

To be sure, they also tested how cells with and without LLL12 treatment responded to chemotherapy. The small molecule treatment completely blocked resistance to the drug, Lin said, even in the types of liver cancer cells that express the highest IL-6 levels and are most resistant to doxorubicin.

Importantly, the researchers were able to determine that inhibiting STAT3 activation did not affect other proteins that are induced by IL-6 for potentially beneficial reasons. The small molecule also did not exacerbate the effects of chemotherapy on normal liver cells.

Lin and colleagues are currently testing the effects of LLL12 in multiple myeloma, breast and colon cancer cells, in which the IL-6/STAT3 pathway also plays an important role.

This work was supported by the grants from the National Institutes of Health, the Pancreatic Cancer Action Network – American Association of Cancer Research, and the National Foundation for Cancer Research.

Co-authors of the study include Yan Liu of the Department of Pediatrics, and Pui-Kai Li and Chenglong Li of the Division of Medicinal Chemistry and Pharmacognosy, all at Ohio State.

Contact: Jiayuh Lin, (614) 722-5086; lin.674@osu.edu
Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Jiayuh Lin | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>