Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking an oncogene in liver cancer could be potential therapy option

13.10.2010
Scientists have found that a synthetic molecule they designed can block activation of a gene in liver cancer cells, halting a process that allows some of those cancer cells to survive chemotherapy.

Without the interference of this gene’s function, certain liver cancer cells appear to be protected from the toxic effects of chemotherapy drugs.

Blocking the oncogene, called STAT3, prevents a protein from protecting the cells, the research suggests. As a result, more liver cancer cells succumb to treatment.

Researchers hope an anti-cancer drug based on the molecule’s design eventually will be developed for use in patients, after the required animal and clinical testing is completed.

The scientists have seen similar results in studies using this experimental molecule, called LLL12, to block STAT3 as a way to induce cell death in breast and pancreatic cancer cells.

“For patients, it would be easy to use an intravenous drug based on this small molecule, which is relatively cheap and easy to manufacture,” said Jiayuh Lin, senior author of the study and an associate professor of pediatrics at Ohio State University.

“We also have seen signs that blocking STAT3 could block other downstream targets, and could affect other STAT3-regulated genes that can turn normal cells into cancer cells. We believe this molecule has a lot of potential for cancer therapy.”

Lin led the team of scientists who designed LLL12 using powerful computers and a computational method called structure-based design. The group reported on its creation earlier this year.

This new study is published in a recent issue of the Journal of Biological Chemistry.

The protein in this process is called interleukin-6, or IL-6. It is a cytokine, a chemical messenger that causes inflammation, and can have both beneficial and damaging effects in the body. Previous research by other scientists has shown that high levels of IL-6 in the blood are associated with hepatocellular carcinoma, the most common type of liver cancer.

The fifth most common cancer in humans, liver cancer remains one of the most difficult to successfully treat. Patients’ overall five-year survival rate is about 10 percent, according to the American Cancer Society.

In this study, the researchers observed that liver cancer cells known to be resistant to a common chemotherapy drug, doxorubicin, had higher levels of IL-6 than did other liver cancer cells – an indication that the protein likely fosters the drug resistance. Subsequent tests showed that these resistant cells with high IL-6 also had higher levels of STAT3 phosphorylation than did other cells.

To further demonstrate this relationship between the protein and cell survival, Lin and colleagues pretreated liver cancer cells with the chemotherapy drug and then followed with different doses of IL-6. The addition of IL-6 rescued these cells from chemo-induced death.

Alternately, when the scientists introduced an antibody to inhibit IL-6 in drug-resistant cancer cells and then followed with doses of doxorubicin, 70 percent more of the cells treated with the IL-6 inhibitor died compared to cells treated with the chemo drug alone – a sign that the loss of IL-6 lowers survival in these particular cancer cells.

After determining in cell cultures that IL-6 activates STAT3 to help perform this cell survival function, the researchers focused on testing the effects of blocking the gene alone.

They first used silencing RNA, or siRNA, to prevent activation of the STAT3. More of the siRNA-treated cells died than did cells in which the STAT3 was not blocked.

“At this point, we know that STAT3 plays an important role, and that IL-6 depends on STAT3 to protect cells from dying,” said Lin, also an investigator in Ohio State’s Comprehensive Cancer Center and the Center for Childhood Cancer at Nationwide Children’s Hospital.

The scientists then turned to the synthetic molecule, LLL12, which was designed specifically to tuck itself into a gap in STAT3’s two-part structure and disable its activation.

The researchers introduced LLL12 to four types of liver cancer cells and followed with a dose of IL-6. The IL-6 protein had no protective effect on cells treated with the molecule, meaning it could not turn on STAT3, a required step in protecting the cells from death.

To be sure, they also tested how cells with and without LLL12 treatment responded to chemotherapy. The small molecule treatment completely blocked resistance to the drug, Lin said, even in the types of liver cancer cells that express the highest IL-6 levels and are most resistant to doxorubicin.

Importantly, the researchers were able to determine that inhibiting STAT3 activation did not affect other proteins that are induced by IL-6 for potentially beneficial reasons. The small molecule also did not exacerbate the effects of chemotherapy on normal liver cells.

Lin and colleagues are currently testing the effects of LLL12 in multiple myeloma, breast and colon cancer cells, in which the IL-6/STAT3 pathway also plays an important role.

This work was supported by the grants from the National Institutes of Health, the Pancreatic Cancer Action Network – American Association of Cancer Research, and the National Foundation for Cancer Research.

Co-authors of the study include Yan Liu of the Department of Pediatrics, and Pui-Kai Li and Chenglong Li of the Division of Medicinal Chemistry and Pharmacognosy, all at Ohio State.

Contact: Jiayuh Lin, (614) 722-5086; lin.674@osu.edu
Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Jiayuh Lin | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>