Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking key enzyme in cancer cells could lead to new therapy

02.08.2013
Researchers from the University of Illinois at Chicago College of Medicine have identified a characteristic unique to cancer cells in an animal model of cancer — and they believe it could be exploited as a target to develop new treatment strategies.

An enzyme that metabolizes the glucose needed for tumor growth is found in high concentrations in cancer cells, but in very few normal adult tissues. Deleting the gene for the enzyme stopped the growth of cancer in laboratory mice, with no associated adverse effects, reports Nissim Hay, UIC professor of biochemistry and molecular genetics, and his colleagues in the August 12 issue of Cancer Cell.

Targeting glucose metabolism for cancer therapy — while avoiding adverse effects in other parts of the body — has been a “questionable” strategy, Hay said. But he and his coworkers showed that the glucose-metabolism enzyme hexokinase-2 can be almost completely eliminated in adult mice without affecting normal metabolic functions or lifespan.

Hexokinase-2 is abundant in embryos but absent in most adult cells, where related enzymes take over its role in metabolism. One of the changes that mark a cell as cancerous is expression of the embryonic enzyme. Hay and his colleagues showed that the embryonic version is required for cancer cells to proliferate and grow, and that eliminating it halts tumor growth.

They developed a mouse strain in which they could silence or delete the HK2 gene in the adult animal, and they found that these mice could not develop or sustain lung or breast cancer tumors but were otherwise normal and healthy.

“We have deleted the HK2 gene systemically in these mice, and they have been living for more than two years now. Their lifespan is the same as normal mice,” Hay said.

The researchers also looked at human lung and breast cancer cells in the lab, and found that if they eliminated all HK2, the cells stopped growing.

“We think that the process we used to delete the HK2 gene is not absolutely perfect, so there must be some low levels of HK2 in the mice. But that seems to be enough for the cells that use HK2, and the therapeutic effects on tumors in these mice are stable.”

Hay thinks the enzyme is involved in making the building-blocks for the DNA of cancer cells, which need lots of all cellular components as they rapidly divide.

“Without HK2, the cancer cells don’t make enough DNA for new cells, and so tumor growth comes to a standstill,” said Hay.

Krushna C. Patra, Qi Wang, Prashanth Bhaskar, Luke Miller, Zebin Wang from UIC; Will Wheaton, Navdeep Chandel from Northwestern University Feinberg School of Medicine; Markku Laasko from the University of Eastern Finland, William Muller from McGill University in Montreal; Eric Allen, Abhishek Jha, Gromoslaw Smolen, Michelle Clasquin from Agios Pharmaceuticals; and Brooks Robey from Dartmouth Medical School also contributed to this research.

The research was supported by VA Merit Award BX000733, by NIH grants AG016927 and CA090764, and in part by the UIC Center for Clinical and Translational Sciences Award Number ULRR029879, and grant from the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust to Hay. Patra was supported by Defense Department predoctoral fellowship W81XWH-11-1-0006.

Sharon Parmet | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>