Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blocking DNA: HDAC inhibitor targets triple negative breast cancer

The histone de-acetylase (HDAC) inhibitor panobinostat is able to target and destroy triple negative breast cancer, reveals a new study published in BioMed Central's open access journal Breast Cancer Research. Researchers from Tulane University Health Sciences Center have shown that panobinostat was able to destroy breast cancer cells and reduce tumor growth in mice.

Approximately 15% of breast cancers are found at diagnosis to be triple negative. These aggressive tumours are missing both the estrogen receptor and progesterone receptor, which means that they do not respond to hormonal therapies such as antiestrogens or aromatase inhibitors. They also test negative for the growth factor receptor HER2 and cannot be treated with monoclonal therapy such as Herceptin, so there is a desperate need for treatment options to complement surgery and chemotherapy.

Whether DNA is active or not in cells is tightly controlled. DNA in the nucleus is wound around histones and effectively shut down. When a gene is required the cell acetylates the histone, relaxing the tight control over DNA and allowing the cells machinery access to the gene, eventually leading to protein production.

HDACs have the opposite effect and reduce DNA activity. Aberrant HDACs are possibly responsible for the lack of production of normal cellular controls which allow the uncontrolled growth of cancer cells. The researchers from New Orleans hoped that by blocking HDACs they could restore normal cell function.

The HDAC inhibitor panobinostat was able to increase histone acetylation in triple negative breast cancer cell lines. There was also a concurrent decrease in cell division and increase in apoptosis (programmed cell death). Additionally, a marked increase in the epithelial cell marker E-cadherin was observed, indicative of a less aggressive cell type.

Dr. Bridgette Collins-Burow, who led the study, described the results, "Panobinostat selectively targeted triple negative breast cancer cells and decreased tumor growth in mice. It was also able to partially reverse the morphological changes in cells to a more epithelial type. These results show a potential therapeutic role for HDAC inhibitors, especially panobinostat, in targeting the aggressive triple negative breast cancer."

Notes to Editors

1. Targeting triple-negative breast cancer cells with the HDAC inhibitor Panobinostat
Chandra R Tate, Lyndsay V Rhodes, H Chris Segar, Jennifer L Driver, F Nell Pounder, Matthew E Burow and Bridgette M Collins-Burow

Breast Cancer Research (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Breast Cancer Research is an international, peer-reviewed online journal, publishing original research, reviews, commentaries and reports. Research articles of exceptional interest are published in all areas of biology and medicine relevant to breast cancer, including normal mammary gland biology, with special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition, the journal publishes clinical studies with a biological basis, including Phase I and Phase II trials.

3. BioMed Central ( is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:

Further reports about: BioMed DNA HDAC breast breast cancer breast cancer cells cancer cells

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>