Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocked Protein Prevents Lupus in Mouse Model

22.01.2009
Mice from a strain that ordinarily develops systemic lupus erythematosus (SLE), but bred with a deficiency in receptor for the protein Interleukin 21, stayed healthy and exhibited none of the symptoms of the disease, researchers at The Jackson Laboratory and National Institutes of Health report.

SLE is an autoimmune disease, with symptoms of varying severity including include painful or swollen joints, unexplained fever and extreme fatigue. An estimated 2 million Americans—9 out of 10 of them female—live with SLE.

The primary job of the immune system is to identify and vanquish potentially dangerous infectious pathogens. Autoimmune diseases develop when immune system instead unleashes this potent defense system against the individual’s own tissues, with predictably severe consequences.

Unlike other autoimmune diseases such as Type 1 diabetes, in which the immune response is focused on certain tissues, SLE is a systemic disease in which abnormal antibodies are produced that injure a variety of tissues and organs, including the skin, heart, lungs and kidneys.

The cause of SLE is not well understood, but recent work by a Jackson Laboratory research team led by Professor Derry Roopenian is shedding light on how the disease develops and offers hope for better therapies.

Interleukin 21 (IL21) is produced as part of the response by immune cells known as T cells. The IL21 produced then affects a variety of cells in the normal immune system response. However, IL21 produced in overabundance by individuals susceptible to SLE can cause the defense mechanism to misfire and produce antibodies that attack the individual’s own tissues.

Dr. Roopenian and colleagues at the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases worked with a mouse model for SLE and demonstrated that IL21 signaling is essential for the SLE-like autoimmune disease to progress. Mice deficient in the cellular receptor for IL21 that were otherwise genetically identical remained healthy and exhibited none of the disease symptoms.

“The findings provide strong clue towards understanding how SLE occurs and a clear indication of the importance of Interleukin 21 signaling in lupus like diseases”, Dr. Roopenian says. “They suggest that interrupting Interleukin 21 signaling events may prove to be an effective therapeutic option for human SLE.”

The Jackson Laboratory (www.jax.org) is an independent, nonprofit biomedical research institution and National Cancer Institute-designated Cancer Center based in Bar Harbor, Maine, with a facility in Sacramento, California. Its mission is to discover the genetic basis for preventing, treating and curing human diseases, and to enable research and education for the global biomedical community. The Laboratory is the world's source for more than 4,000 strains of genetically defined mice, is home of the mouse genome database and is an international hub for scientific courses, conferences, training and education.

A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice: Proceedings of the National Academy of Sciences, scheduled for Early Edition publication Jan. 19-23, 2009.

Joyce Peterson | Newswise Science News
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>