Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocked Protein Prevents Lupus in Mouse Model

22.01.2009
Mice from a strain that ordinarily develops systemic lupus erythematosus (SLE), but bred with a deficiency in receptor for the protein Interleukin 21, stayed healthy and exhibited none of the symptoms of the disease, researchers at The Jackson Laboratory and National Institutes of Health report.

SLE is an autoimmune disease, with symptoms of varying severity including include painful or swollen joints, unexplained fever and extreme fatigue. An estimated 2 million Americans—9 out of 10 of them female—live with SLE.

The primary job of the immune system is to identify and vanquish potentially dangerous infectious pathogens. Autoimmune diseases develop when immune system instead unleashes this potent defense system against the individual’s own tissues, with predictably severe consequences.

Unlike other autoimmune diseases such as Type 1 diabetes, in which the immune response is focused on certain tissues, SLE is a systemic disease in which abnormal antibodies are produced that injure a variety of tissues and organs, including the skin, heart, lungs and kidneys.

The cause of SLE is not well understood, but recent work by a Jackson Laboratory research team led by Professor Derry Roopenian is shedding light on how the disease develops and offers hope for better therapies.

Interleukin 21 (IL21) is produced as part of the response by immune cells known as T cells. The IL21 produced then affects a variety of cells in the normal immune system response. However, IL21 produced in overabundance by individuals susceptible to SLE can cause the defense mechanism to misfire and produce antibodies that attack the individual’s own tissues.

Dr. Roopenian and colleagues at the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases worked with a mouse model for SLE and demonstrated that IL21 signaling is essential for the SLE-like autoimmune disease to progress. Mice deficient in the cellular receptor for IL21 that were otherwise genetically identical remained healthy and exhibited none of the disease symptoms.

“The findings provide strong clue towards understanding how SLE occurs and a clear indication of the importance of Interleukin 21 signaling in lupus like diseases”, Dr. Roopenian says. “They suggest that interrupting Interleukin 21 signaling events may prove to be an effective therapeutic option for human SLE.”

The Jackson Laboratory (www.jax.org) is an independent, nonprofit biomedical research institution and National Cancer Institute-designated Cancer Center based in Bar Harbor, Maine, with a facility in Sacramento, California. Its mission is to discover the genetic basis for preventing, treating and curing human diseases, and to enable research and education for the global biomedical community. The Laboratory is the world's source for more than 4,000 strains of genetically defined mice, is home of the mouse genome database and is an international hub for scientific courses, conferences, training and education.

A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice: Proceedings of the National Academy of Sciences, scheduled for Early Edition publication Jan. 19-23, 2009.

Joyce Peterson | Newswise Science News
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>