Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocked Protein Prevents Lupus in Mouse Model

22.01.2009
Mice from a strain that ordinarily develops systemic lupus erythematosus (SLE), but bred with a deficiency in receptor for the protein Interleukin 21, stayed healthy and exhibited none of the symptoms of the disease, researchers at The Jackson Laboratory and National Institutes of Health report.

SLE is an autoimmune disease, with symptoms of varying severity including include painful or swollen joints, unexplained fever and extreme fatigue. An estimated 2 million Americans—9 out of 10 of them female—live with SLE.

The primary job of the immune system is to identify and vanquish potentially dangerous infectious pathogens. Autoimmune diseases develop when immune system instead unleashes this potent defense system against the individual’s own tissues, with predictably severe consequences.

Unlike other autoimmune diseases such as Type 1 diabetes, in which the immune response is focused on certain tissues, SLE is a systemic disease in which abnormal antibodies are produced that injure a variety of tissues and organs, including the skin, heart, lungs and kidneys.

The cause of SLE is not well understood, but recent work by a Jackson Laboratory research team led by Professor Derry Roopenian is shedding light on how the disease develops and offers hope for better therapies.

Interleukin 21 (IL21) is produced as part of the response by immune cells known as T cells. The IL21 produced then affects a variety of cells in the normal immune system response. However, IL21 produced in overabundance by individuals susceptible to SLE can cause the defense mechanism to misfire and produce antibodies that attack the individual’s own tissues.

Dr. Roopenian and colleagues at the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases worked with a mouse model for SLE and demonstrated that IL21 signaling is essential for the SLE-like autoimmune disease to progress. Mice deficient in the cellular receptor for IL21 that were otherwise genetically identical remained healthy and exhibited none of the disease symptoms.

“The findings provide strong clue towards understanding how SLE occurs and a clear indication of the importance of Interleukin 21 signaling in lupus like diseases”, Dr. Roopenian says. “They suggest that interrupting Interleukin 21 signaling events may prove to be an effective therapeutic option for human SLE.”

The Jackson Laboratory (www.jax.org) is an independent, nonprofit biomedical research institution and National Cancer Institute-designated Cancer Center based in Bar Harbor, Maine, with a facility in Sacramento, California. Its mission is to discover the genetic basis for preventing, treating and curing human diseases, and to enable research and education for the global biomedical community. The Laboratory is the world's source for more than 4,000 strains of genetically defined mice, is home of the mouse genome database and is an international hub for scientific courses, conferences, training and education.

A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice: Proceedings of the National Academy of Sciences, scheduled for Early Edition publication Jan. 19-23, 2009.

Joyce Peterson | Newswise Science News
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>