Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocked Protein Prevents Lupus in Mouse Model

22.01.2009
Mice from a strain that ordinarily develops systemic lupus erythematosus (SLE), but bred with a deficiency in receptor for the protein Interleukin 21, stayed healthy and exhibited none of the symptoms of the disease, researchers at The Jackson Laboratory and National Institutes of Health report.

SLE is an autoimmune disease, with symptoms of varying severity including include painful or swollen joints, unexplained fever and extreme fatigue. An estimated 2 million Americans—9 out of 10 of them female—live with SLE.

The primary job of the immune system is to identify and vanquish potentially dangerous infectious pathogens. Autoimmune diseases develop when immune system instead unleashes this potent defense system against the individual’s own tissues, with predictably severe consequences.

Unlike other autoimmune diseases such as Type 1 diabetes, in which the immune response is focused on certain tissues, SLE is a systemic disease in which abnormal antibodies are produced that injure a variety of tissues and organs, including the skin, heart, lungs and kidneys.

The cause of SLE is not well understood, but recent work by a Jackson Laboratory research team led by Professor Derry Roopenian is shedding light on how the disease develops and offers hope for better therapies.

Interleukin 21 (IL21) is produced as part of the response by immune cells known as T cells. The IL21 produced then affects a variety of cells in the normal immune system response. However, IL21 produced in overabundance by individuals susceptible to SLE can cause the defense mechanism to misfire and produce antibodies that attack the individual’s own tissues.

Dr. Roopenian and colleagues at the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases worked with a mouse model for SLE and demonstrated that IL21 signaling is essential for the SLE-like autoimmune disease to progress. Mice deficient in the cellular receptor for IL21 that were otherwise genetically identical remained healthy and exhibited none of the disease symptoms.

“The findings provide strong clue towards understanding how SLE occurs and a clear indication of the importance of Interleukin 21 signaling in lupus like diseases”, Dr. Roopenian says. “They suggest that interrupting Interleukin 21 signaling events may prove to be an effective therapeutic option for human SLE.”

The Jackson Laboratory (www.jax.org) is an independent, nonprofit biomedical research institution and National Cancer Institute-designated Cancer Center based in Bar Harbor, Maine, with a facility in Sacramento, California. Its mission is to discover the genetic basis for preventing, treating and curing human diseases, and to enable research and education for the global biomedical community. The Laboratory is the world's source for more than 4,000 strains of genetically defined mice, is home of the mouse genome database and is an international hub for scientific courses, conferences, training and education.

A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice: Proceedings of the National Academy of Sciences, scheduled for Early Edition publication Jan. 19-23, 2009.

Joyce Peterson | Newswise Science News
Further information:
http://www.jax.org

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>