Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blockade in Cellular Waste Disposal

21.06.2013
Proteins can only perform their complex functions in the cell when they assume a specific three-dimensional structure for each respective task.

Because misfolded proteins are often toxic, they are immediately refolded or degraded. Scientists of the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich have now shown in the yeast model that specific protein aggregates block an important degradation pathway for defective proteins – and thus disrupt the fragile molecular balance of the cell. The results of the study have now been published in the journal Cell.


PolyQ aggregates (red) inhibit degradation of misfolded protein (green) and accumulate cytosolic inclusions. The nucleus is stained in blue.


Picture: Sae-Hun Park, Copyright: MPI of Biochemistry.

Protein aggregates in cells can cause severe diseases such as Huntington’s disease. The massive movement disorders that appear with this disease are likely caused by aggregates of specific proteins, the polyQ proteins. Scientists of the research department “Cellular Biochemistry” headed by F.-Ulrich Hartl have now shown how these protein aggregates, commonly known as plaques, seriously disrupt cellular homeostasis.

Cells in the balance

The entire set of all cellular proteins is referred to as the proteome, whose composition is determined by a delicate balance of protein production and degradation. This process is regulated at several levels. Key helpers here are the molecular chaperones which aid the proteins in proper folding or lead them to degradation if the misfolding is irreparable. Among other things, this procedure serves to prevent the formation of protein plaques. Hartl’s team has now succeeded in demonstrating that polyQ aggregates in yeast primarily have an effect on the chaperone Sis1p.

This molecule functions as a cellular shuttle: It transports misfolded proteins from the cytosol into the cell nucleus, where they are degraded. The harmful polyQ plaques block this process by intercepting Sis1p. “As a result, misfolded proteins accumulate in the cell, which may contribute to the toxicity of polyQ aggregates,” said Sae-Hun Park, scientist at the MPI of Biochemistry and first author of the study.

Similar processes may occur in polyQ diseases in humans. Also in mammalian cells, misfolded proteins are transported from the cytosol into the nucleus. Here the chaperone DnajB1 plays a role similar to Sis1p in the yeast model. Contrary to prevailing opinion, Hartl’s team even assumes that this degradation pathway is the most important means of clearance of misfolded proteins from the cell interior. Further studies shall now show whether and to what extent these fundamental processes play a role in the pathogenic protein plaques.

Original publication:
Sae-Hun Park, Yury Kukushkin, Rajat Gupta, Taotao Chen, AyanoKonagai, Mark S. Hipp, Manajit Hayer-Hartl, F.Ulrich Hartl: PolyQ Proteins Interfere with Nuclear Degradation of Cytosolic Proteins by Sequestering the Sis1p Chaperone, Cell, June 20, 2013.
DOI: 10.1016/j.cell.2013.06.003

Contact:

Prof. Dr. F.-Ulrich Hartl
Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
email: uhartl@biochem.mpg.de
www.biochem.mpg.de/hartl

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone: +49 89 8578-2824
email: konschak@biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/en/news/pressroom/index.html
- Press Releases of the MPI of Biochemistry
http://www.biochem.mpg.de/hartl
- Research Department "Cellular Biochemistry" (F.-Ulrich Hartl)

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>