Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blockade in Cellular Waste Disposal

21.06.2013
Proteins can only perform their complex functions in the cell when they assume a specific three-dimensional structure for each respective task.

Because misfolded proteins are often toxic, they are immediately refolded or degraded. Scientists of the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich have now shown in the yeast model that specific protein aggregates block an important degradation pathway for defective proteins – and thus disrupt the fragile molecular balance of the cell. The results of the study have now been published in the journal Cell.


PolyQ aggregates (red) inhibit degradation of misfolded protein (green) and accumulate cytosolic inclusions. The nucleus is stained in blue.


Picture: Sae-Hun Park, Copyright: MPI of Biochemistry.

Protein aggregates in cells can cause severe diseases such as Huntington’s disease. The massive movement disorders that appear with this disease are likely caused by aggregates of specific proteins, the polyQ proteins. Scientists of the research department “Cellular Biochemistry” headed by F.-Ulrich Hartl have now shown how these protein aggregates, commonly known as plaques, seriously disrupt cellular homeostasis.

Cells in the balance

The entire set of all cellular proteins is referred to as the proteome, whose composition is determined by a delicate balance of protein production and degradation. This process is regulated at several levels. Key helpers here are the molecular chaperones which aid the proteins in proper folding or lead them to degradation if the misfolding is irreparable. Among other things, this procedure serves to prevent the formation of protein plaques. Hartl’s team has now succeeded in demonstrating that polyQ aggregates in yeast primarily have an effect on the chaperone Sis1p.

This molecule functions as a cellular shuttle: It transports misfolded proteins from the cytosol into the cell nucleus, where they are degraded. The harmful polyQ plaques block this process by intercepting Sis1p. “As a result, misfolded proteins accumulate in the cell, which may contribute to the toxicity of polyQ aggregates,” said Sae-Hun Park, scientist at the MPI of Biochemistry and first author of the study.

Similar processes may occur in polyQ diseases in humans. Also in mammalian cells, misfolded proteins are transported from the cytosol into the nucleus. Here the chaperone DnajB1 plays a role similar to Sis1p in the yeast model. Contrary to prevailing opinion, Hartl’s team even assumes that this degradation pathway is the most important means of clearance of misfolded proteins from the cell interior. Further studies shall now show whether and to what extent these fundamental processes play a role in the pathogenic protein plaques.

Original publication:
Sae-Hun Park, Yury Kukushkin, Rajat Gupta, Taotao Chen, AyanoKonagai, Mark S. Hipp, Manajit Hayer-Hartl, F.Ulrich Hartl: PolyQ Proteins Interfere with Nuclear Degradation of Cytosolic Proteins by Sequestering the Sis1p Chaperone, Cell, June 20, 2013.
DOI: 10.1016/j.cell.2013.06.003

Contact:

Prof. Dr. F.-Ulrich Hartl
Cellular Biochemistry
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
email: uhartl@biochem.mpg.de
www.biochem.mpg.de/hartl

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Phone: +49 89 8578-2824
email: konschak@biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/en/news/pressroom/index.html
- Press Releases of the MPI of Biochemistry
http://www.biochem.mpg.de/hartl
- Research Department "Cellular Biochemistry" (F.-Ulrich Hartl)

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>