Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


In the blink of an eye: X-ray imaging on the attosecond timescale

Berkeley Lab research at AAAS Meeting

In the blink of an eye, more attoseconds have expired than the age of Earth measured in – minutes. A lot more. To be precise, an attosecond is one billionth of a billionth of a second.

The attosecond timescale is where you must go to study the electron action that is the starting point of all of chemistry. Not surprisingly, chemists are most eager to explore it with X-rays, the region of the electromagnetic spectrum that can probe the core electrons of atoms, the electrons that uniquely identify atomic species.

Heralded as the science of the 21st century by Science and The Economist, attosecond science is a new frontier of molecular and material science. It is expected to catalyze novel applications in a wide range of fields such as nanotechnology and life sciences, based on the ultimate visualization and control of the quantum nature of the electron.

Ali Belkacem, a chemist with the Lawrence Berkeley National Laboratory, has been using powerful laboratory-scale lasers to test whether multidimensional nonlinear x-ray spectroscopy on the attosecond timescale is practical for the light sources of the future – and just what combination of beam characteristics is needed to define them.

"Chemistry is inherently dynamical," he has said. "That means, to make inroads in understanding – and ultimately controlling – chemical reactions we have to understand how atoms combine to form molecules; how electrons and nuclei couple; how molecules interact, react, and transform; how electrical charges flow; and how different forms of energy move within a molecule or across molecular boundaries. Most importantly, we have to know how all these things behave in a correlated way, dynamically in time and space, both at the electron and atomic levels."

Belkacem will give a presentation at the 2013 AAAS annual meeting in Boston titled "Attosecond Science for Steering Chemical Reactions." The talk is part of the panel session titled "Attosecond Science in Chemical, Molecular Imaging, Spintronics, and Energy Science," which is scheduled for February 17, from 8:30 AM to 11:30 AM in Room 306 of the Hynes Convention Center.

Sunday, February 17, 8:30 AM to 11:30 AM
Room 306, Hynes Convention Center

Jon Weiner | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>