Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the blink of an eye: X-ray imaging on the attosecond timescale

18.02.2013
Berkeley Lab research at AAAS Meeting

In the blink of an eye, more attoseconds have expired than the age of Earth measured in – minutes. A lot more. To be precise, an attosecond is one billionth of a billionth of a second.

The attosecond timescale is where you must go to study the electron action that is the starting point of all of chemistry. Not surprisingly, chemists are most eager to explore it with X-rays, the region of the electromagnetic spectrum that can probe the core electrons of atoms, the electrons that uniquely identify atomic species.

Heralded as the science of the 21st century by Science and The Economist, attosecond science is a new frontier of molecular and material science. It is expected to catalyze novel applications in a wide range of fields such as nanotechnology and life sciences, based on the ultimate visualization and control of the quantum nature of the electron.

Ali Belkacem, a chemist with the Lawrence Berkeley National Laboratory, has been using powerful laboratory-scale lasers to test whether multidimensional nonlinear x-ray spectroscopy on the attosecond timescale is practical for the light sources of the future – and just what combination of beam characteristics is needed to define them.

"Chemistry is inherently dynamical," he has said. "That means, to make inroads in understanding – and ultimately controlling – chemical reactions we have to understand how atoms combine to form molecules; how electrons and nuclei couple; how molecules interact, react, and transform; how electrical charges flow; and how different forms of energy move within a molecule or across molecular boundaries. Most importantly, we have to know how all these things behave in a correlated way, dynamically in time and space, both at the electron and atomic levels."

Belkacem will give a presentation at the 2013 AAAS annual meeting in Boston titled "Attosecond Science for Steering Chemical Reactions." The talk is part of the panel session titled "Attosecond Science in Chemical, Molecular Imaging, Spintronics, and Energy Science," which is scheduled for February 17, from 8:30 AM to 11:30 AM in Room 306 of the Hynes Convention Center.

Sunday, February 17, 8:30 AM to 11:30 AM
Room 306, Hynes Convention Center

Jon Weiner | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>