Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blinded by Speed, Tiger Beetles Use Antennae to 'See' While Running

13.02.2014
Speed is blinding. Just ask the tiger beetle: This predatory insect has excellent sight, but when it chases prey, it runs so fast it can no longer see where it’s going.

Cornell University researchers have discovered that, unlike insects that wave their “feelers” around to acquire information, tiger beetles rigidly hold their antennae directly in front of them to mechanically sense their environments and avoid obstacles while running, according to a study published online in the journal Proceedings of the Royal Society B.

The findings raise questions about strategies used by other fast animals, such as birds of prey and some fish, to sense their environments when speed blinds. The research also has implications for autonomous vehicles that could use fixed antennae to detect obstacles.

“For an insect with really good vision that is active in the daytime normally, you would think it would not rely on antennae for sensing its environment,” said Cole Gilbert, Cornell professor of entomology and the paper’s senior author. Daniel Zurek, a postdoctoral researcher in Gilbert’s lab, is the paper’s first author.

“It has evolved important mechano-sensing behavior while running because it runs so fast,” Gilbert added.

In an earlier paper, Gilbert reported that tiger beetles run so fast, their eyes cannot capture enough light to form images of their prey. Therefore, the insects stop for just milliseconds to relocate prey, then start running again.

Gilbert and Zurek sought to learn how the running insects negotiate obstacles in their habitat, such as crevasses or grass stems, and what role their characteristically forward antennae play. To test this, the researchers set up a runway with a hurdle: In one experiment normal tiger beetles (of the species Cicindela hirticollis) ran the track and negotiated the hurdle, tilting their bodies up when their antennae touched the hurdle; in a second experiment, the researchers painted over the beetles’ eyes and found these blind beetles responded similarly. In the third test, they clipped the antennae of sighted beetles, and the insects smacked right into the hurdle.

The experiment revealed that for fast-moving tiger beetles, “eyes are not sufficient or necessary to avoid obstacles,” Gilbert said. “The antennae are held extremely rigid with the tips 1.5 millimeters off the ground, so they would potentially pick up any discontinuity in the surface.”

Gilbert questions how peregrine falcons and predatory fish compensate for blurry sight while speeding towards prey, potential research areas that no one has tested. The current study may provide a model for new questions. It’s possible, for example, that motion-blind fish perhaps employ their lateral line, sense organs found in aquatic vertebrates used to detect movement and vibration in water.

Also, autonomous vehicles could employ protruding antennae to sense their surroundings, as some of the first robots were fitted with, said Gilbert. “It would be cheaper than cameras,” he said. “For some applications, an antennae might be a solution, it is certainly one that worked evolutionarily for tiger beetles.”

The study was funded by the National Science Foundation

Joe Schwartz | Newswise
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>