Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blinded by Speed, Tiger Beetles Use Antennae to 'See' While Running

13.02.2014
Speed is blinding. Just ask the tiger beetle: This predatory insect has excellent sight, but when it chases prey, it runs so fast it can no longer see where it’s going.

Cornell University researchers have discovered that, unlike insects that wave their “feelers” around to acquire information, tiger beetles rigidly hold their antennae directly in front of them to mechanically sense their environments and avoid obstacles while running, according to a study published online in the journal Proceedings of the Royal Society B.

The findings raise questions about strategies used by other fast animals, such as birds of prey and some fish, to sense their environments when speed blinds. The research also has implications for autonomous vehicles that could use fixed antennae to detect obstacles.

“For an insect with really good vision that is active in the daytime normally, you would think it would not rely on antennae for sensing its environment,” said Cole Gilbert, Cornell professor of entomology and the paper’s senior author. Daniel Zurek, a postdoctoral researcher in Gilbert’s lab, is the paper’s first author.

“It has evolved important mechano-sensing behavior while running because it runs so fast,” Gilbert added.

In an earlier paper, Gilbert reported that tiger beetles run so fast, their eyes cannot capture enough light to form images of their prey. Therefore, the insects stop for just milliseconds to relocate prey, then start running again.

Gilbert and Zurek sought to learn how the running insects negotiate obstacles in their habitat, such as crevasses or grass stems, and what role their characteristically forward antennae play. To test this, the researchers set up a runway with a hurdle: In one experiment normal tiger beetles (of the species Cicindela hirticollis) ran the track and negotiated the hurdle, tilting their bodies up when their antennae touched the hurdle; in a second experiment, the researchers painted over the beetles’ eyes and found these blind beetles responded similarly. In the third test, they clipped the antennae of sighted beetles, and the insects smacked right into the hurdle.

The experiment revealed that for fast-moving tiger beetles, “eyes are not sufficient or necessary to avoid obstacles,” Gilbert said. “The antennae are held extremely rigid with the tips 1.5 millimeters off the ground, so they would potentially pick up any discontinuity in the surface.”

Gilbert questions how peregrine falcons and predatory fish compensate for blurry sight while speeding towards prey, potential research areas that no one has tested. The current study may provide a model for new questions. It’s possible, for example, that motion-blind fish perhaps employ their lateral line, sense organs found in aquatic vertebrates used to detect movement and vibration in water.

Also, autonomous vehicles could employ protruding antennae to sense their surroundings, as some of the first robots were fitted with, said Gilbert. “It would be cheaper than cameras,” he said. “For some applications, an antennae might be a solution, it is certainly one that worked evolutionarily for tiger beetles.”

The study was funded by the National Science Foundation

Joe Schwartz | Newswise
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>