Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blind mole-rats are resistant to chemically induced cancers

04.09.2013
Like naked mole-rats (Heterocephalus gaber), blind mole-rats (of the genus Spalax) live underground in low-oxygen environments, are long-lived and resistant to cancer.

A new study demonstrates just how cancer-resistant Spalax are, and suggests that the adaptations that help these rodents survive in low-oxygen environments also play a role in their longevity and cancer resistance.

The findings are reported in the journal Biomed Central: Biology.

“We’ve shown that, compared to mice and rats, blind mole-rats are highly resistant to carcinogens,” said Mark Band, the director of functional genomics at the University of Illinois Biotechnology Center and a co-author on the study. Band led a previous analysis of gene expression in blind mole-rats living in low-oxygen (hypoxic) environments. He found that genes that respond to hypoxia are known to also play a role in aging and in suppressing or promoting cancer.

“We think that these three phenomena are tied in together: the hypoxia tolerance, the longevity and cancer resistance,” Band said. “We think all result from evolutionary adaptations to a stressful environment.”

Unlike the naked mole-rat, which lives in colonies in Eastern Africa, the blind mole-rat is a solitary rodent found in the Eastern Mediterranean. Thousands of blind mole-rats have been captured and studied for more than 50 years at Israel’s University of Haifa, where the animal work was conducted. The Haifa scientists observed that none of their blind mole-rats had ever developed cancer, even though Spalax can live more than 20 years. Lab mice and rats have a maximum lifespan of about 3.5 years and yet regularly develop spontaneous cancers.

To test the blind mole-rats’ cancer resistance, the Haifa team, led by Irena Manov, Aaron Avivi and Imad Shams, exposed the animals to two cancer-causing agents. Only one of the 20 Spalax tested (an animal that was more than 10 years old) developed malignant tumors after exposure to one of the carcinogens. In contrast, all of the 12 mice and six rats exposed to either agent developed cancerous tumors.

The team next turned its attention to fibroblasts, cells that generate extracellular factors that support and buffer other cells. Previous studies of naked mole-rat cells have found that fibroblasts and their secretions have anti-cancer activity. Similarly, the researchers at Haifa found that Spalax fibroblasts were efficient killers of two types of breast cancer cells and two types of lung cancer cells. Diluted and filtered liquid medium drawn from the fibroblast cell culture also killed breast and lung cancer cells. Mouse fibroblasts, however, had no effect on the cancer cells.

To help explain these results, Band and his colleagues looked to the gene expression profiles obtained from their previous studies of blind mole-rats in hypoxic environments. The researchers had found that genes that regulate DNA repair, the cell cycle and programmed cell death are differentially regulated in Spalax when exposed to normal, above-ground oxygen levels (21 percent oxygen) and conditions of hypoxia (3, 6 and 10 percent oxygen). These changes in gene regulation differed from those of mice or rats under the same conditions, the researchers found.

Spalax naturally have a variant in the p53 gene (a transcription factor and known tumor suppressor), which is identical to a cancer-related mutation in humans, Band said. Transcription-factor genes code for proteins that regulate the activity of other genes and so affect an animal’s ability to respond to its environment. The research group in Israel showed “that the Spalax p53 suppresses apoptosis (programmed cell death), however enhances cell cycle arrest and DNA repair mechanisms,” he said.

Hypoxia can damage DNA and contribute to aging and cancer, so mechanisms that protect against hypoxia – by repairing DNA, for example – likely also help explain the blind mole-rat’s resistance to cancer and aging, Band said.

“So now we know there’s overlap among the genes that affect DNA repair, hypoxia tolerance and cancer suppression,” he said. “We haven’t been able to show the exact mechanisms yet, but we’re able to show that in Spalax they’re all related. One of the lessons of this research is that we have a new model animal to study mechanisms of disease, and possibly discover new therapeutic agents.”

The United States-Israel Binational Science Foundation and the Israel Cancer Association supported this research.

Editor’s notes: To reach Mark Band, call 217-244-3930; email markband@illinois.edu.

The paper, “Pronounced Cancer Resistance in a Subterranean Rodent, the Blind Mole-Rat, Spalax: In Vivo and In Vitro Evidence,” is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>