Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blind mole-rats are resistant to chemically induced cancers

04.09.2013
Like naked mole-rats (Heterocephalus gaber), blind mole-rats (of the genus Spalax) live underground in low-oxygen environments, are long-lived and resistant to cancer.

A new study demonstrates just how cancer-resistant Spalax are, and suggests that the adaptations that help these rodents survive in low-oxygen environments also play a role in their longevity and cancer resistance.

The findings are reported in the journal Biomed Central: Biology.

“We’ve shown that, compared to mice and rats, blind mole-rats are highly resistant to carcinogens,” said Mark Band, the director of functional genomics at the University of Illinois Biotechnology Center and a co-author on the study. Band led a previous analysis of gene expression in blind mole-rats living in low-oxygen (hypoxic) environments. He found that genes that respond to hypoxia are known to also play a role in aging and in suppressing or promoting cancer.

“We think that these three phenomena are tied in together: the hypoxia tolerance, the longevity and cancer resistance,” Band said. “We think all result from evolutionary adaptations to a stressful environment.”

Unlike the naked mole-rat, which lives in colonies in Eastern Africa, the blind mole-rat is a solitary rodent found in the Eastern Mediterranean. Thousands of blind mole-rats have been captured and studied for more than 50 years at Israel’s University of Haifa, where the animal work was conducted. The Haifa scientists observed that none of their blind mole-rats had ever developed cancer, even though Spalax can live more than 20 years. Lab mice and rats have a maximum lifespan of about 3.5 years and yet regularly develop spontaneous cancers.

To test the blind mole-rats’ cancer resistance, the Haifa team, led by Irena Manov, Aaron Avivi and Imad Shams, exposed the animals to two cancer-causing agents. Only one of the 20 Spalax tested (an animal that was more than 10 years old) developed malignant tumors after exposure to one of the carcinogens. In contrast, all of the 12 mice and six rats exposed to either agent developed cancerous tumors.

The team next turned its attention to fibroblasts, cells that generate extracellular factors that support and buffer other cells. Previous studies of naked mole-rat cells have found that fibroblasts and their secretions have anti-cancer activity. Similarly, the researchers at Haifa found that Spalax fibroblasts were efficient killers of two types of breast cancer cells and two types of lung cancer cells. Diluted and filtered liquid medium drawn from the fibroblast cell culture also killed breast and lung cancer cells. Mouse fibroblasts, however, had no effect on the cancer cells.

To help explain these results, Band and his colleagues looked to the gene expression profiles obtained from their previous studies of blind mole-rats in hypoxic environments. The researchers had found that genes that regulate DNA repair, the cell cycle and programmed cell death are differentially regulated in Spalax when exposed to normal, above-ground oxygen levels (21 percent oxygen) and conditions of hypoxia (3, 6 and 10 percent oxygen). These changes in gene regulation differed from those of mice or rats under the same conditions, the researchers found.

Spalax naturally have a variant in the p53 gene (a transcription factor and known tumor suppressor), which is identical to a cancer-related mutation in humans, Band said. Transcription-factor genes code for proteins that regulate the activity of other genes and so affect an animal’s ability to respond to its environment. The research group in Israel showed “that the Spalax p53 suppresses apoptosis (programmed cell death), however enhances cell cycle arrest and DNA repair mechanisms,” he said.

Hypoxia can damage DNA and contribute to aging and cancer, so mechanisms that protect against hypoxia – by repairing DNA, for example – likely also help explain the blind mole-rat’s resistance to cancer and aging, Band said.

“So now we know there’s overlap among the genes that affect DNA repair, hypoxia tolerance and cancer suppression,” he said. “We haven’t been able to show the exact mechanisms yet, but we’re able to show that in Spalax they’re all related. One of the lessons of this research is that we have a new model animal to study mechanisms of disease, and possibly discover new therapeutic agents.”

The United States-Israel Binational Science Foundation and the Israel Cancer Association supported this research.

Editor’s notes: To reach Mark Band, call 217-244-3930; email markband@illinois.edu.

The paper, “Pronounced Cancer Resistance in a Subterranean Rodent, the Blind Mole-Rat, Spalax: In Vivo and In Vitro Evidence,” is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>