Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blame it on the astrocytes

11.07.2014

In the brains of all vertebrates, information is transmitted through synapses, a mechanism that allows an electric or chemical signal to be passed from one brain cell to another.

Chemical synapses, which are the most abundant type of synapse, can be either excitatory or inhibitory. Synapse formation is crucial for learning, memory, perception and cognition, and the balance between excitatory and inhibitory synapses critical for brain function.

For instance, every time we learn something, the new information is transformed into memory through synaptic plasticity, a process in which synapses are strengthened and become more responsive to different stimuli or environmental cues. Synapses may change their shape or function in a matter of seconds or over an entire lifetime. In humans, a number of disorders are associated with dysfunctional synapses, including autism, epilepsy, substance abuse and depression.

Astrocytes, named for their star-like shape, are ubiquitous brain cells known for regulating excitatory synapse formation through cells. Recent studies have shown that astrocytes also play a role in forming inhibitory synapses, but the key players and underlying mechanisms have remained unknown until now.

A new study just published in the journal Glia and available online on July 11th, details the newly discovered mechanism by which astrocytes are involved in inhibitory synapse formation and presents strong evidence that Transforming Growth Factor Beta 1 (TGF β1), a protein produced by many cell types (including astrocytes) is a key player in this process. The team led by Flávia Gomes of the Rio de Janeiro Institute of Biomedical Sciences at the Federal University of Rio de Janeiro investigated the process in both mouse and human tissues, first in test tubes, then in living brain cells.

Previous evidence has shown that TGF β1, a molecule associated with essential functions in nervous system development and repair, modulates other components responsible for normal brain function. In this study, the authors were able to show that TGF β1 triggers N-methyl-D-aspartate receptor (NMDA), a molecule controlling memory formation and maintenance through synaptic plasticity.

In the study, the group also shows that TGF β1-induction of inhibitory synapses depends on activation of another molecule - Ca2+/calmodulin-dependent protein kinase II (CaMK2)-, which works as a mediator for learning and memory. "Our study is the first to associate this complex pathway of molecules, of which TGF β1 seems to be a key player, to astrocytes' ability to modulate inhibitory synapses", says Flávia Gomes.

The idea that the balance between excitatory and inhibitory inputs depends on astrocyte signals gains strong support with this new study and suggests a pivotal role for astrocytes in the development of neurological disorders involving impaired inhibitory synapse transmission. Knowing the players and mechanisms underlying inhibitory synapses may improve our understanding of synaptic plasticity and cognitive processes and may help develop new drugs for treating these diseases.

###

The paper entitled "Astrocyte Transforming Growth Factor Beta 1 Promotes Inhibitory Synapse Formation Via Cam Kinase II Signaling" can be found online at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1098-1136

The research was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Institute of Glia (iGLIA/CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Flávia Gomes | Eurek Alert!

Further reports about: CNPq Synapse TGF Transforming astrocytes disorders excitatory mechanisms plasticity synapses synaptic

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>