Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Black Queen Hypothesis: A new evolutionary theory

27.03.2012
Microorganisms can sometimes lose the ability to perform a function that appears to be necessary for their survival, and yet they still somehow manage to endure and multiply. How can this be?

The authors of an opinion piece appearing in mBio®, the online open-access journal of the American Society for Microbiology, on March 27 explain their ideas about the matter. They say microbes that shed necessary functions are getting others to do the hard work for them, an adaptation that can encourage microorganisms to live in cooperative communities.

The Black Queen Hypothesis, as they call it, puts forth the idea that some of the needs of microorganisms can be met by other organisms, enabling microbes that rely on one another to live more efficiently by paring down the genes they have to carry around. In these cases, it would make evolutionary sense for a microbe to lose a burdensome gene for a function it doesn't have to perform for itself. The authors, Richard Lenski and J. Jeffrey Morris of Michigan State University, and Erik Zinser of the University of Tennessee, named the hypothesis for the queen of spades in the game Hearts, in which the usual strategy is to avoid taking this card.

"It's a sweeping hypothesis for how free-living microorganisms evolve to become dependent on each other," says Richard Losick of Harvard University, who edited the paper. "The heart of the hypothesis is that many genetic functions provide products that leak in and out of cells and hence become public goods," he says.

As an illustration of the hypothesis, the authors apply it to one particular microbial system that has been a source of some confusion: one of the most common plankton species in the open ocean, Prochlorococcus, which has a much smaller genome than you might expect. Scientists have wondered how Prochlorococcus has managed to be extremely successful while shedding important genes, including the gene for catalase-peroxidase, which allows it to neutralize hydrogen peroxide, a compound that can damage or even kill cells. Prochlorococcus relies on the other microorganisms around it to remove hydrogen peroxide from the environment, say the authors, allowing it to fob off its responsibilities on the unlucky card holders around it. This is an instance of how one species can profit from paring down while relying on other members of the community to help out.

Losick says the Black Queen Hypothesis offers a new way of looking at complicated, inter-dependent communities of microorganisms. "I have a special interest in how bacteria form biofilms, complex natural communities that often consist of many different kinds of bacteria. The Black Queen Hypothesis provides a valuable new way to think about how the members of these biofilm communities coevolved."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>