Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Black Queen Hypothesis: A new evolutionary theory

27.03.2012
Microorganisms can sometimes lose the ability to perform a function that appears to be necessary for their survival, and yet they still somehow manage to endure and multiply. How can this be?

The authors of an opinion piece appearing in mBio®, the online open-access journal of the American Society for Microbiology, on March 27 explain their ideas about the matter. They say microbes that shed necessary functions are getting others to do the hard work for them, an adaptation that can encourage microorganisms to live in cooperative communities.

The Black Queen Hypothesis, as they call it, puts forth the idea that some of the needs of microorganisms can be met by other organisms, enabling microbes that rely on one another to live more efficiently by paring down the genes they have to carry around. In these cases, it would make evolutionary sense for a microbe to lose a burdensome gene for a function it doesn't have to perform for itself. The authors, Richard Lenski and J. Jeffrey Morris of Michigan State University, and Erik Zinser of the University of Tennessee, named the hypothesis for the queen of spades in the game Hearts, in which the usual strategy is to avoid taking this card.

"It's a sweeping hypothesis for how free-living microorganisms evolve to become dependent on each other," says Richard Losick of Harvard University, who edited the paper. "The heart of the hypothesis is that many genetic functions provide products that leak in and out of cells and hence become public goods," he says.

As an illustration of the hypothesis, the authors apply it to one particular microbial system that has been a source of some confusion: one of the most common plankton species in the open ocean, Prochlorococcus, which has a much smaller genome than you might expect. Scientists have wondered how Prochlorococcus has managed to be extremely successful while shedding important genes, including the gene for catalase-peroxidase, which allows it to neutralize hydrogen peroxide, a compound that can damage or even kill cells. Prochlorococcus relies on the other microorganisms around it to remove hydrogen peroxide from the environment, say the authors, allowing it to fob off its responsibilities on the unlucky card holders around it. This is an instance of how one species can profit from paring down while relying on other members of the community to help out.

Losick says the Black Queen Hypothesis offers a new way of looking at complicated, inter-dependent communities of microorganisms. "I have a special interest in how bacteria form biofilms, complex natural communities that often consist of many different kinds of bacteria. The Black Queen Hypothesis provides a valuable new way to think about how the members of these biofilm communities coevolved."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>