Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Black Queen Hypothesis: A new evolutionary theory

27.03.2012
Microorganisms can sometimes lose the ability to perform a function that appears to be necessary for their survival, and yet they still somehow manage to endure and multiply. How can this be?

The authors of an opinion piece appearing in mBio®, the online open-access journal of the American Society for Microbiology, on March 27 explain their ideas about the matter. They say microbes that shed necessary functions are getting others to do the hard work for them, an adaptation that can encourage microorganisms to live in cooperative communities.

The Black Queen Hypothesis, as they call it, puts forth the idea that some of the needs of microorganisms can be met by other organisms, enabling microbes that rely on one another to live more efficiently by paring down the genes they have to carry around. In these cases, it would make evolutionary sense for a microbe to lose a burdensome gene for a function it doesn't have to perform for itself. The authors, Richard Lenski and J. Jeffrey Morris of Michigan State University, and Erik Zinser of the University of Tennessee, named the hypothesis for the queen of spades in the game Hearts, in which the usual strategy is to avoid taking this card.

"It's a sweeping hypothesis for how free-living microorganisms evolve to become dependent on each other," says Richard Losick of Harvard University, who edited the paper. "The heart of the hypothesis is that many genetic functions provide products that leak in and out of cells and hence become public goods," he says.

As an illustration of the hypothesis, the authors apply it to one particular microbial system that has been a source of some confusion: one of the most common plankton species in the open ocean, Prochlorococcus, which has a much smaller genome than you might expect. Scientists have wondered how Prochlorococcus has managed to be extremely successful while shedding important genes, including the gene for catalase-peroxidase, which allows it to neutralize hydrogen peroxide, a compound that can damage or even kill cells. Prochlorococcus relies on the other microorganisms around it to remove hydrogen peroxide from the environment, say the authors, allowing it to fob off its responsibilities on the unlucky card holders around it. This is an instance of how one species can profit from paring down while relying on other members of the community to help out.

Losick says the Black Queen Hypothesis offers a new way of looking at complicated, inter-dependent communities of microorganisms. "I have a special interest in how bacteria form biofilms, complex natural communities that often consist of many different kinds of bacteria. The Black Queen Hypothesis provides a valuable new way to think about how the members of these biofilm communities coevolved."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>