Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Black Arsenic: Fact or Fiction?

Synthesis and identification of metastable compounds

Phosphorus and arsenic are on top of each other in one group of the periodic table, so they have many similar properties. In addition to tubular forms, phosphorus is found in white, red, black, and purple structural forms. At room temperature, black phosphorus is the stable form; the others are metastable. According to textbooks, arsenic occurs in gray, yellow, and black forms.

However, the existence of black arsenic, which should be analogous to black phosphorus, has never been indisputably proven. In the journal Angewandte Chemie, German researchers have now demonstrated that black arsenic is metastable in its pure form, and that it has thus far only been obtained in a form stabilized by atoms of other elements.

In their studies, a team led by Tom Nilges at the Technical University of Munich, Richard Weihrich at the University of Regensburg, and Peer Schmidt at the Lausitz University of Applied Sciences combined quantum chemical computations with experimental investigations of phase formation.

The calculations make it possible to estimate the energetic stabilities of various structural forms of pure substances or combinations of solids, which are called solid solutions. Which phases are formed depends not only on this thermodynamic energy content, but also on the speed (kinetics) with which the individual phases form and interconvert. Metastable phases have a higher energy at defined pressures and temperatures than the stable phase. However, because a relatively high energy barrier must initially be overcome in their conversion, they only slowly convert to the stable phase, if at all.

The researchers used gas-phase reactions to study phase formation. In these reactions, the solids are heated and the resulting pressure, which builds through sublimation of particles from the solid, is measured. Particles from a metastable phase enter the gas phase much more easily, so the pressure is higher than for a stable phase. When a metastable phase converts to a stable phase, the drop in pressure can be observed. It is even possible to observe pathways involving multiple different metastable intermediates.

The researchers were thus able to identify all metastable and stable phases of solid solutions of arsenic and phosphorus in all possible ratios. They were thus able to demonstrate that black arsenic is metastable in its pure form.

The results of such experiments do not only provide fundamental academic knowledge, they are also helpful in the development of targeted synthetic pathways for desirable metastable phases. This is of interest for the production of innovative materials, since metastable phases often demonstrate interesting properties. One current example of a metastable phase is an extremely hard diamond that can theoretically spontaneously convert to graphite—at room temperature—but actually never does.

About the Author
Tom Nilges is professor at the Technische Universität München (Germany) where he is working on the synthesis and characterization of energy conversion and storage materials. In the field of solid-state chemistry, he is also interested in fundamental research and the development of innovative synthesis methods.

Author: Tom Nilges, Technische Universität München (Germany),

Title: Synthesis and Identification of Metastable Compounds: Black Arsenic—Science or Fiction?

Angewandte Chemie International Edition, Permalink to the article:

Tom Nilges | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>