Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Black Arsenic: Fact or Fiction?

Synthesis and identification of metastable compounds

Phosphorus and arsenic are on top of each other in one group of the periodic table, so they have many similar properties. In addition to tubular forms, phosphorus is found in white, red, black, and purple structural forms. At room temperature, black phosphorus is the stable form; the others are metastable. According to textbooks, arsenic occurs in gray, yellow, and black forms.

However, the existence of black arsenic, which should be analogous to black phosphorus, has never been indisputably proven. In the journal Angewandte Chemie, German researchers have now demonstrated that black arsenic is metastable in its pure form, and that it has thus far only been obtained in a form stabilized by atoms of other elements.

In their studies, a team led by Tom Nilges at the Technical University of Munich, Richard Weihrich at the University of Regensburg, and Peer Schmidt at the Lausitz University of Applied Sciences combined quantum chemical computations with experimental investigations of phase formation.

The calculations make it possible to estimate the energetic stabilities of various structural forms of pure substances or combinations of solids, which are called solid solutions. Which phases are formed depends not only on this thermodynamic energy content, but also on the speed (kinetics) with which the individual phases form and interconvert. Metastable phases have a higher energy at defined pressures and temperatures than the stable phase. However, because a relatively high energy barrier must initially be overcome in their conversion, they only slowly convert to the stable phase, if at all.

The researchers used gas-phase reactions to study phase formation. In these reactions, the solids are heated and the resulting pressure, which builds through sublimation of particles from the solid, is measured. Particles from a metastable phase enter the gas phase much more easily, so the pressure is higher than for a stable phase. When a metastable phase converts to a stable phase, the drop in pressure can be observed. It is even possible to observe pathways involving multiple different metastable intermediates.

The researchers were thus able to identify all metastable and stable phases of solid solutions of arsenic and phosphorus in all possible ratios. They were thus able to demonstrate that black arsenic is metastable in its pure form.

The results of such experiments do not only provide fundamental academic knowledge, they are also helpful in the development of targeted synthetic pathways for desirable metastable phases. This is of interest for the production of innovative materials, since metastable phases often demonstrate interesting properties. One current example of a metastable phase is an extremely hard diamond that can theoretically spontaneously convert to graphite—at room temperature—but actually never does.

About the Author
Tom Nilges is professor at the Technische Universität München (Germany) where he is working on the synthesis and characterization of energy conversion and storage materials. In the field of solid-state chemistry, he is also interested in fundamental research and the development of innovative synthesis methods.

Author: Tom Nilges, Technische Universität München (Germany),

Title: Synthesis and Identification of Metastable Compounds: Black Arsenic—Science or Fiction?

Angewandte Chemie International Edition, Permalink to the article:

Tom Nilges | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>