Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bizarre bird behavior predicted by game theory

26.02.2009
A team of scientists, led by the University of Exeter, has used game theory to explain the bizarre behaviour of a group of ravens. Juvenile birds from a roost in North Wales have been observed adopting the unusual strategy of foraging for food in 'gangs'.

New research, published in the journal PLoS One (on Wednesday 25 February 2009), explains how this curious behaviour can be predicted by adapting models more commonly used by economists to analyse financial trends.

This is the first time game theory has been used to successfully predict novel animal behaviour in the real world. The researchers believe this analysis could also shed light on the variation in feeding strategies in different populations in other species.

Ravens feed on the carcasses of large animals. Most populations live in temperate forests, where individuals search for carcasses and finds are then defended by a pair of territorial adults. Unpaired younger birds, on the other hand, gather at communal roosts from which they search individually for carcasses on adult territories and recruit each other to overwhelm adult protectionism. However, at one raven roost on Anglesey, things work differently: juveniles forage in gangs. This level of coordination had not been seen before in a raven population.

The researchers built a mathematical model to understand how this behaviour evolved and why it might occur in some roosts and not others. The model designed for this study was based on techniques used in other game theory models, which identify the most profitable behaviours of individuals in different situations to predict what would be favoured by evolution.

The study revealed two strategies as being most profitable for ravens to find food. One is for birds to search independently for food and recruit each other. The other is for the birds to forage in gangs.

The findings showed that gang foraging should occur when searching for food individually is no more efficient than foraging in groups. This is likely to be the case if the roost covers landscape that can be thoroughly explored by a gang over the course of a day. The deforested Welsh countryside offers just such conditions.

The study also identifies the availability of food as a key factor. The roost in Anglesey is situated in an agricultural area, which means that the carcasses of farm animals are often available so food is more plentiful than in wild locations. When food is abundant, the opportunity for social advancement becomes more important. These ravens seem to be using foraging behaviour, not only to find food, but also to gain social status, which could help in other aspects of their lives, including finding a mate.

Lead author Dr Sasha Dall of the University of Exeter said: "This is a rare example of how game theory has been used to predict behaviour in animals in the real world. Our study shows the potential for game theory to help biologists understand how different social structures and behaviours evolve in different environments and in response to human activities."

This study, entitled Rich pickings near large communal roosts favour 'gang' foraging by juvenile common ravens, Corvus corax, was carried out by a team from the University of Exeter's Cornwall Campus and the Institute of Biology, NTNU, Trondheim, Norway.

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>