Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bizarre bird behavior predicted by game theory

A team of scientists, led by the University of Exeter, has used game theory to explain the bizarre behaviour of a group of ravens. Juvenile birds from a roost in North Wales have been observed adopting the unusual strategy of foraging for food in 'gangs'.

New research, published in the journal PLoS One (on Wednesday 25 February 2009), explains how this curious behaviour can be predicted by adapting models more commonly used by economists to analyse financial trends.

This is the first time game theory has been used to successfully predict novel animal behaviour in the real world. The researchers believe this analysis could also shed light on the variation in feeding strategies in different populations in other species.

Ravens feed on the carcasses of large animals. Most populations live in temperate forests, where individuals search for carcasses and finds are then defended by a pair of territorial adults. Unpaired younger birds, on the other hand, gather at communal roosts from which they search individually for carcasses on adult territories and recruit each other to overwhelm adult protectionism. However, at one raven roost on Anglesey, things work differently: juveniles forage in gangs. This level of coordination had not been seen before in a raven population.

The researchers built a mathematical model to understand how this behaviour evolved and why it might occur in some roosts and not others. The model designed for this study was based on techniques used in other game theory models, which identify the most profitable behaviours of individuals in different situations to predict what would be favoured by evolution.

The study revealed two strategies as being most profitable for ravens to find food. One is for birds to search independently for food and recruit each other. The other is for the birds to forage in gangs.

The findings showed that gang foraging should occur when searching for food individually is no more efficient than foraging in groups. This is likely to be the case if the roost covers landscape that can be thoroughly explored by a gang over the course of a day. The deforested Welsh countryside offers just such conditions.

The study also identifies the availability of food as a key factor. The roost in Anglesey is situated in an agricultural area, which means that the carcasses of farm animals are often available so food is more plentiful than in wild locations. When food is abundant, the opportunity for social advancement becomes more important. These ravens seem to be using foraging behaviour, not only to find food, but also to gain social status, which could help in other aspects of their lives, including finding a mate.

Lead author Dr Sasha Dall of the University of Exeter said: "This is a rare example of how game theory has been used to predict behaviour in animals in the real world. Our study shows the potential for game theory to help biologists understand how different social structures and behaviours evolve in different environments and in response to human activities."

This study, entitled Rich pickings near large communal roosts favour 'gang' foraging by juvenile common ravens, Corvus corax, was carried out by a team from the University of Exeter's Cornwall Campus and the Institute of Biology, NTNU, Trondheim, Norway.

Sarah Hoyle | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>