Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bitter and the sweet: Fruit flies reveal a new interaction between the 2

22.08.2013
Fruit flies have a lot to teach us about the complexity of food. Like these tiny little creatures, most animals are attracted to sugar but are deterred from eating it when bitter compounds are added.

A new study conducted by UC Santa Barbara's Craig Montell, Duggan Professor of Neuroscience in the Department of Molecular, Cellular and Developmental Biology, explains a breakthrough in understanding how sensory input impacts fruit flies' decisions about sweet taste. The findings were published today in the journal Neuron.


The red shows expression of the OBP49a protein in accessory (thecogen) cells in gustatory sensilla, which are distributed on the labella. Credit: UCSB

It is generally well known that the addition of bitter compounds inhibits attraction to sugars. However, until now the cellular and molecular mechanisms underlying an important aspect of this ubiquitous animal behavior were poorly understood.

When animals encounter bitterness in foods, two factors cause them to stop eating. First, bitter compounds bind to proteins called bitter gustatory receptors (GRs), which inhibits feeding. The second –– and more elusive –– factor involves inhibition of the sugar response. This is the focus of Montell's research.

At the center of the team's discovery is the function of an odorant-binding protein (OPB) in the gustatory system. These proteins are usually but not exclusively resident in the olfactory system. Montell's team found definitive evidence that an OBP, synthesized and released from non-neuronal cells, not only binds bitter tastants, but also moves and binds to the surface of nearby gustatory receptor neurons (GRNs) that contain sugar-activated GRs.

This unanticipated process inhibits the activity of these GRNs and reduces the fruit flies' attraction to sugars. These results not only reveal an unexpected role for an OBP in taste, but also identify the first molecular player (OBP49a) involved in the integration of opposing attractive and aversive gustatory stimuli in fruit flies.

The researchers used two different fruit flies, wild-type and mutants missing the OBP49a protein, to demonstrate that bitter compounds suppress feeding behavior by binding to the OBP49a protein. As expected, wild-type flies find bitter aversive and prefer the lower concentration of sucrose when the higher concentration of sucrose is laced with bitter tastants such as quinine.

The same was not true of the mutant flies, which do not express OBP49a. Their avoidance behavior was impaired because the bitter compounds did not inhibit the sweet response by binding to OPB49. However, loss of OBP49a did not affect gustatory behavior or action potentials in sugar- or bitter-activated GRNs when the GRNs were presented with just one type of tastant.

"We showed that the OBP49a protein was in very close proximity or even touching the sugar GRs," said Montell. "If the bitter compound weren't present, there would be normal sugar activation. We found that decreased behavioral avoidance to a sucrose/aversive mixture in the mutant flies was due to a deficit in the sugar-activated GRNs and not due to effects on GRNs activated by bitter compounds."

OBP49a is the first molecule shown to promote the inhibition of the sucrose-activated GRNs by aversive chemicals in fruit flies. The findings demonstrate at least one important cellular mechanism through which bitter and sweet taste integration occurs in the taste receptor neurons. However, the findings do not exclude the possibility that suppression of sweet by bitter compounds could also take place through the integration of separate bitter and sweet inputs in the brain.

"As we get a better understanding of aversive and attractive chemosensory behaviors in flies, it helps us understand how insect pests can be controlled," said Montell. "This is a step toward understanding the behaviors of related insects that spread disease. Molecules related to the OBPs and GRs in fruit flies are also in ticks and mosquitos that spread parasites and viruses."

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

Further reports about: GRNs OBP49a fresh fruit fruit flies molecular mechanism mutant flies

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>