Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Bitter Blocker Discovered

06.06.2011
Serendipitous finding increases understanding of taste, opening doors to better nutrition and therapeutic compliance.

Although bitterness can sometimes be desirable – such as in the taste of coffee or chocolate – more often bitter taste causes rejection that can interfere with food selection, nutrition and therapeutic compliance. This is especially true for children. Now, scientists from the Monell Center and Integral Molecular describe the discovery of a compound that inhibits bitterness by acting directly on a subset of bitter taste receptors.

“Bitter taste is a major problem for pediatric drug compliance and also for proper nutrition, such as eating those healthy but bitter green vegetables,” said Monell senior author Paul Breslin, Ph.D., a sensory biologist. “But we currently have very limited ways to effectively control bitter taste.”

Bitterness is detected by a family of approximately 25 different taste receptors called TAS2Rs. Together, the TAS2Rs respond to a broad array of structurally different compounds, many of which are found in nature and can be toxic.

Discovery of bitter blockers would help scientists understand the signaling mechanisms of these receptors and promote the design of novel and more effective blockers.

Monell and Integral Molecular are collaborating on a large project to understand the structure and function of TAS2Rs. In a serendipitous discovery, the researchers found that probenecid, a molecule frequently used in receptor assays, is an inhibitor of a subset of bitter taste receptors. Probenecid also is an FDA-approved therapeutic for gout.

In the study, published in PLoS ONE, a series of in vitro studies revealed that probenecid does not physically block interaction of bitter molecules with the receptor’s primary binding site. Rather, it appears to bind elsewhere on the receptor to modulate the receptor’s ability to interact with the bitter molecule.

“Probenecid’s mechanism of action makes it a useful tool for understanding how bitter receptors function,” said Integral Molecular senior author Joseph B. Rucker, Ph.D. “This knowledge will help us develop more potent bitter taste inhibitors.”

A series of human sensory studies established that probenecid robustly inhibited the bitter taste of salicin, a compound that stimulates one of the target receptors.

“This demonstrates how we can take experiments in vitro and go on to show how they make a difference functionally and perceptually,” said Breslin.

Additional studies will continue to explore the structure and function of TAS2Rs. The overall goal is to identify the regions of the receptors that contribute to bitter molecule binding and how binding events lead to signaling events within the cell.

Understanding modulation of bitter receptor function may have additional implications for the respiratory and gastrointestinal systems, as bitter taste receptors also are expressed in the nose, the lungs and the intestines.

Also contributing to the research were first author Tiffani A. Greene, Anu Thomas, Eli Berdougo, and Benjamin J. Doranz of Integral Molecular, and Suzanne Alarcon of Rutgers University School of Environmental and Biological Sciences. Dr. Breslin is also faculty at Rutgers University School of Environmental and Biological Sciences. The research was funded by the National Institute on Deafness and Other Communication Disorders.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit www.monell.org.

Integral Molecular is a biotechnology company committed to providing innovative solutions for scientific research and drug discovery applications involving integral membrane proteins. Integral Molecular is a privately-owned company founded in 2001 and located in central Philadelphia. The company has been working with pharmaceutical, biotechnology and academic customers and collaborators since its inception, providing membrane protein related products and services that advance its customers’ scientific objectives. For more information about Integral Molecular, visit www.integralmolecular.com.

Leslie Stein | Newswise Science News
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>