Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Bitter Blocker Discovered

06.06.2011
Serendipitous finding increases understanding of taste, opening doors to better nutrition and therapeutic compliance.

Although bitterness can sometimes be desirable – such as in the taste of coffee or chocolate – more often bitter taste causes rejection that can interfere with food selection, nutrition and therapeutic compliance. This is especially true for children. Now, scientists from the Monell Center and Integral Molecular describe the discovery of a compound that inhibits bitterness by acting directly on a subset of bitter taste receptors.

“Bitter taste is a major problem for pediatric drug compliance and also for proper nutrition, such as eating those healthy but bitter green vegetables,” said Monell senior author Paul Breslin, Ph.D., a sensory biologist. “But we currently have very limited ways to effectively control bitter taste.”

Bitterness is detected by a family of approximately 25 different taste receptors called TAS2Rs. Together, the TAS2Rs respond to a broad array of structurally different compounds, many of which are found in nature and can be toxic.

Discovery of bitter blockers would help scientists understand the signaling mechanisms of these receptors and promote the design of novel and more effective blockers.

Monell and Integral Molecular are collaborating on a large project to understand the structure and function of TAS2Rs. In a serendipitous discovery, the researchers found that probenecid, a molecule frequently used in receptor assays, is an inhibitor of a subset of bitter taste receptors. Probenecid also is an FDA-approved therapeutic for gout.

In the study, published in PLoS ONE, a series of in vitro studies revealed that probenecid does not physically block interaction of bitter molecules with the receptor’s primary binding site. Rather, it appears to bind elsewhere on the receptor to modulate the receptor’s ability to interact with the bitter molecule.

“Probenecid’s mechanism of action makes it a useful tool for understanding how bitter receptors function,” said Integral Molecular senior author Joseph B. Rucker, Ph.D. “This knowledge will help us develop more potent bitter taste inhibitors.”

A series of human sensory studies established that probenecid robustly inhibited the bitter taste of salicin, a compound that stimulates one of the target receptors.

“This demonstrates how we can take experiments in vitro and go on to show how they make a difference functionally and perceptually,” said Breslin.

Additional studies will continue to explore the structure and function of TAS2Rs. The overall goal is to identify the regions of the receptors that contribute to bitter molecule binding and how binding events lead to signaling events within the cell.

Understanding modulation of bitter receptor function may have additional implications for the respiratory and gastrointestinal systems, as bitter taste receptors also are expressed in the nose, the lungs and the intestines.

Also contributing to the research were first author Tiffani A. Greene, Anu Thomas, Eli Berdougo, and Benjamin J. Doranz of Integral Molecular, and Suzanne Alarcon of Rutgers University School of Environmental and Biological Sciences. Dr. Breslin is also faculty at Rutgers University School of Environmental and Biological Sciences. The research was funded by the National Institute on Deafness and Other Communication Disorders.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit www.monell.org.

Integral Molecular is a biotechnology company committed to providing innovative solutions for scientific research and drug discovery applications involving integral membrane proteins. Integral Molecular is a privately-owned company founded in 2001 and located in central Philadelphia. The company has been working with pharmaceutical, biotechnology and academic customers and collaborators since its inception, providing membrane protein related products and services that advance its customers’ scientific objectives. For more information about Integral Molecular, visit www.integralmolecular.com.

Leslie Stein | Newswise Science News
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>