Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Bitter Blocker Discovered

06.06.2011
Serendipitous finding increases understanding of taste, opening doors to better nutrition and therapeutic compliance.

Although bitterness can sometimes be desirable – such as in the taste of coffee or chocolate – more often bitter taste causes rejection that can interfere with food selection, nutrition and therapeutic compliance. This is especially true for children. Now, scientists from the Monell Center and Integral Molecular describe the discovery of a compound that inhibits bitterness by acting directly on a subset of bitter taste receptors.

“Bitter taste is a major problem for pediatric drug compliance and also for proper nutrition, such as eating those healthy but bitter green vegetables,” said Monell senior author Paul Breslin, Ph.D., a sensory biologist. “But we currently have very limited ways to effectively control bitter taste.”

Bitterness is detected by a family of approximately 25 different taste receptors called TAS2Rs. Together, the TAS2Rs respond to a broad array of structurally different compounds, many of which are found in nature and can be toxic.

Discovery of bitter blockers would help scientists understand the signaling mechanisms of these receptors and promote the design of novel and more effective blockers.

Monell and Integral Molecular are collaborating on a large project to understand the structure and function of TAS2Rs. In a serendipitous discovery, the researchers found that probenecid, a molecule frequently used in receptor assays, is an inhibitor of a subset of bitter taste receptors. Probenecid also is an FDA-approved therapeutic for gout.

In the study, published in PLoS ONE, a series of in vitro studies revealed that probenecid does not physically block interaction of bitter molecules with the receptor’s primary binding site. Rather, it appears to bind elsewhere on the receptor to modulate the receptor’s ability to interact with the bitter molecule.

“Probenecid’s mechanism of action makes it a useful tool for understanding how bitter receptors function,” said Integral Molecular senior author Joseph B. Rucker, Ph.D. “This knowledge will help us develop more potent bitter taste inhibitors.”

A series of human sensory studies established that probenecid robustly inhibited the bitter taste of salicin, a compound that stimulates one of the target receptors.

“This demonstrates how we can take experiments in vitro and go on to show how they make a difference functionally and perceptually,” said Breslin.

Additional studies will continue to explore the structure and function of TAS2Rs. The overall goal is to identify the regions of the receptors that contribute to bitter molecule binding and how binding events lead to signaling events within the cell.

Understanding modulation of bitter receptor function may have additional implications for the respiratory and gastrointestinal systems, as bitter taste receptors also are expressed in the nose, the lungs and the intestines.

Also contributing to the research were first author Tiffani A. Greene, Anu Thomas, Eli Berdougo, and Benjamin J. Doranz of Integral Molecular, and Suzanne Alarcon of Rutgers University School of Environmental and Biological Sciences. Dr. Breslin is also faculty at Rutgers University School of Environmental and Biological Sciences. The research was funded by the National Institute on Deafness and Other Communication Disorders.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit www.monell.org.

Integral Molecular is a biotechnology company committed to providing innovative solutions for scientific research and drug discovery applications involving integral membrane proteins. Integral Molecular is a privately-owned company founded in 2001 and located in central Philadelphia. The company has been working with pharmaceutical, biotechnology and academic customers and collaborators since its inception, providing membrane protein related products and services that advance its customers’ scientific objectives. For more information about Integral Molecular, visit www.integralmolecular.com.

Leslie Stein | Newswise Science News
Further information:
http://www.monell.org

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>