Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can you bite a nut?

03.02.2009
Your ancestors could. New research has led to novel insights into how feeding and dietary adaptations may have shaped the evolution of the earliest humans. The anthropologist Gerhard Weber, University of Vienna, just published together with an international team this research result in the Proceedings of the National Academy of Sciences (PNAS).

An international research team found that a more than two million year-old early human ingested large nuts and seeds that may have been "foods of last resort". The ability to eat foods that were difficult to process could have been an ecologically significant adaptation.

The article "The feeding biomechanics and dietary ecology of Australopithecus africanus," is the first of a series devoted to the study of the mechanics of feeding in primates and Australopithecines.

The results showed that Australopithecus africanus, a human relative that lived in South Africa over two million years ago, had a facial skeleton that was well designed to withstand premolar bites. This suggests that A. africanus might have used its enlarged premolars and structurally reinforced face to crack open and ingest large hard nuts. These nuts may have been critical resources upon which these humans relied during times of resource scarcity or when their preferred foods were unavailable.

Advanced Techniques

The scientists implement advanced techniques for their research. The team of Gerhard Weber from the University of Vienna provided the basis with Virtual Anthropology (VA). Then David Strait and his workgroup from the University of Albany, NY, conducted the Finite Element Analysis (FEA). The FEA an engineering method used to examine how objects of complex geometry respond to loads.

University of Vienna: Center of Virtual Anthropology

Before FEA can be applied, an accurate 3D model of the fossil’s skull is needed. At University of Vienna, Gerhard Weber’s workgroup “Virtual Anthropology” is one of the few centers where such kind of reconstructions of fossil specimens can be undertaken. After scanning the fossils with computer tomography the digital copies can be handled and measured electronically. Also unwanted structures like former plaster reconstructions or embedded stone matrix can be removed without touching the precious originals again. “In this case we were lucky to have teeth available from a very similar other specimen so that we could reconstruct the edentulous face of ‘Mrs. Ples’, as the fossil is called” says Weber.

Gerhard Weber leads a European network funded by the EU (European Virtual Anthropology Network – EVAN). The network aims to spread this kind of technology in Europe and to train young researchers. Applications meanwhile reached the medical sector as well where diagnosis and implant planning exploit the same methods as those used for investigating fossils.

Veronika Schallhart | alfa
Further information:
http://www.univie.ac.at
http://www.evan.at
http://www.virtual-anthropology.com

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>