Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can you bite a nut?

03.02.2009
Your ancestors could. New research has led to novel insights into how feeding and dietary adaptations may have shaped the evolution of the earliest humans. The anthropologist Gerhard Weber, University of Vienna, just published together with an international team this research result in the Proceedings of the National Academy of Sciences (PNAS).

An international research team found that a more than two million year-old early human ingested large nuts and seeds that may have been "foods of last resort". The ability to eat foods that were difficult to process could have been an ecologically significant adaptation.

The article "The feeding biomechanics and dietary ecology of Australopithecus africanus," is the first of a series devoted to the study of the mechanics of feeding in primates and Australopithecines.

The results showed that Australopithecus africanus, a human relative that lived in South Africa over two million years ago, had a facial skeleton that was well designed to withstand premolar bites. This suggests that A. africanus might have used its enlarged premolars and structurally reinforced face to crack open and ingest large hard nuts. These nuts may have been critical resources upon which these humans relied during times of resource scarcity or when their preferred foods were unavailable.

Advanced Techniques

The scientists implement advanced techniques for their research. The team of Gerhard Weber from the University of Vienna provided the basis with Virtual Anthropology (VA). Then David Strait and his workgroup from the University of Albany, NY, conducted the Finite Element Analysis (FEA). The FEA an engineering method used to examine how objects of complex geometry respond to loads.

University of Vienna: Center of Virtual Anthropology

Before FEA can be applied, an accurate 3D model of the fossil’s skull is needed. At University of Vienna, Gerhard Weber’s workgroup “Virtual Anthropology” is one of the few centers where such kind of reconstructions of fossil specimens can be undertaken. After scanning the fossils with computer tomography the digital copies can be handled and measured electronically. Also unwanted structures like former plaster reconstructions or embedded stone matrix can be removed without touching the precious originals again. “In this case we were lucky to have teeth available from a very similar other specimen so that we could reconstruct the edentulous face of ‘Mrs. Ples’, as the fossil is called” says Weber.

Gerhard Weber leads a European network funded by the EU (European Virtual Anthropology Network – EVAN). The network aims to spread this kind of technology in Europe and to train young researchers. Applications meanwhile reached the medical sector as well where diagnosis and implant planning exploit the same methods as those used for investigating fossils.

Veronika Schallhart | alfa
Further information:
http://www.univie.ac.at
http://www.evan.at
http://www.virtual-anthropology.com

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>