Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds Fight Alien Parasites

06.01.2010
Unlike Hawaii and other island groups, no native bird has gone extinct in the Galapagos Islands, although some are in danger. But University of Utah biologists found that finches – the birds Darwin studied – develop antibodies against two parasites that moved to the Galapagos, suggesting the birds can fight the alien invaders.

With the discovery that the medium ground finches produce antibodies aimed specifically at the parasites – a pox virus and a nest fly – “the next step is to determine if this immune response is helping the birds or hurting the birds,” says University of Utah biology Professor Dale Clayton, who led the new study.

One cannot assume the immune response will help because antibodies also can be involved in autoimmune diseases and allergy symptoms.

Nevertheless the new study is significant because “these finches are icons of evolution, and the icons are in danger of extinction,” Clayton says. “Are they sitting ducks? Are they sitting finches? To answer that, the first question is, does the immune system recognize the parasites? And this study shows, yes it does.”

The study will be published online Wednesday, Jan 6. in PLoS ONE, a journal of the Public Library of Science.

Clayton says a key finding is that “wild species can respond to invasive parasites with which they have no history of association. The immune system has been activated.”

Development of antibodies “shows the birds may have the ability to fight back,” says Jen Koop, a University of Utah doctoral candidate and study coauthor.

Koop and Clayton say that, to their knowledge, the study is the first to show a wild bird species produces antibodies aimed specifically at different classes of parasites.

Earlier studies found immune responses by birds injected with a foreign substance, but those responses are general, not specific to a real parasite, Clayton adds.

Clayton and Koop conducted the study with first author Sarah Huber, a former University of Utah postdoctoral researcher and now an assistant professor at Randolph-Macon College in Virginia. Other coauthors were entomologist Jeb Owen and zoologist Marisa King of Washington State University; and Princeton University evolutionary biologists and 2009 Kyoto Prize winners Peter and Rosemary Grant, who have studied Galapagos finches for decades.

The new study was funded primarily by the National Science Foundation.

A Tale of Two Parasites

The study involved two parasites that invaded the Galapagos Islands, off the coast of Ecuador. One is the pox virus, Poxvirus avium. Koop says it “creates lesions on non-feathered parts of a bird – around the bill, eyes, legs and feet. Toes and feet can fall off.”

The study’s main focus was the other parasite, the nest fly, Philornis downsi, which was introduced to the Galapagos as early as 1964. The fly larvae infest finch nests and attack featherless skin, impairing the growth of nestling birds and even killing them.

“The flies can create open sores on nestlings, and decrease survival,” Koop says.

There are 15 species of finches in the Galapagos. All evolved from a common ancestor. Darwin observed changes in their beaks and other features over time, so “they figured prominently in his thinking about how new species evolve,” Clayton says.

The Galapagos is “the most famous group of islands that hasn’t had any native birds go extinct yet,” Clayton says. “Many of the native species in Hawaii, for example, have gone extinct because of humans,” who introduced mosquitoes with malaria as well as predators such as cats and rats, destroyed habitat and hunted birds for feathers.

No native birds have yet gone extinct in the Galapagos because “there were few people living there until the mid-1800s,” he adds. That may change with the introduction of nest flies from elsewhere in South America and of mosquitoes that carry the pox virus.

The new study and ongoing work aim to determine whether “the birds are able to fight back, do they have defenses, or have they just been blindsided because they have no evolutionary history with these parasites,” Clayton says.

The Study and Its Findings

The researchers collected ground finches in 2008 at two Galapagos islands about 5 miles apart: Isla Daphne Major and at El Garrapatero on Isla Santa Cruz. Nest flies were found on both islands, but pox virus was found only on Daphne Major.

The birds were captured using nets and baited live-animal traps. Before release, each bird was fitted with leg bands for future identification.

On Daphne Major, the Grants, Huber and Koop captured 30 finches and noted whether the birds had pox sores or signs of prior pox infection, like scarring or lost toes.

On Santa Cruz, they examined finches before and during nesting, which is when the birds are exposed to fly larvae that infest their nests. They captured 37 birds exposed to nest fly larvae, and 76 that were not. They found 96 percent of nests were infested.

On both islands, the researchers collected a small blood sample from a wing vein in each bird. They used what are known as ELISA tests to check the finches’ blood for antibodies to both the pox virus and nest flies. Study coauthors King and Owen developed a way to use the method to test for finch antibodies to both parasites.

"This study develops a tool that can be used to survey the rest of the Galapagos to determine which populations of birds have been exposed to the parasites and which have not been exposed,” says Clayton. “The tool could be used to see if birds on some islands are better than birds on others at fending off the parasites.”

The new study found:

-- Finches on Daphne Major had an antibody response to pox virus three times stronger than the response by Santa Cruz finches, which showed no signs of the virus.

-- Finches on Santa Cruz that were tested during nesting had an antibody response to nest flies 1.7 times stronger than the response by birds tested before nesting.

Host vs. Parasite: An Evolutionary Arms Race

When parasites invade a “naïve” population, “the question is can the host evolve defenses fast enough,” Clayton says. “It’s what we call in evolutionary biology an arms race between the host and the parasite.”

It is unlikely the finches already evolved defenses to the pox virus and nest fly, but for yet-unknown reasons, they “have genetic diversity that lets them mount immune responses to parasites, including ones they haven’t seen before,” he adds.

Koop now is studying whether the finches’ immune response helps them or makes them feel ill and less likely to mate, feed chicks, watch for predators and defend territory.

Clayton says such research is urgently needed “because in theory these flies could lead to rapid extinction of bird species” – and not just finches – in the Galapagos.

“Species have long histories of evolving together,” says Clayton. “This can lead to a balance. The parasites use hosts but don’t drive them extinct because the hosts fight back. But if you pick up a parasite from one spot on Earth and drop it on another spot – something people are doing frequently – then the host animal may not have a chance. There are lots of invasive parasites. This is a big problem worldwide.”

University of Utah Public Relations
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

| Newswise Science News
Further information:
http://www.unews.utah.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>