Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird Navigation - Great Balls of Iron

26.04.2013
Every year millions of birds make heroic journeys guided by the earth’s magnetic field. How they detect magnetic fields has puzzled scientists for decades. Today, the Keays lab at the Research Institute of Molecular Pathology in Vienna has added some important pieces to this puzzle.

Their work, published in Current Biology, reports the discovery of iron balls in sensory neurons. These cells, called hair cells, are found in the ear and are responsible for detecting sound and gravity. Remarkably, each cell has just one iron ball, and it is in the same place in every cell.


A image showing cells from the inner ear of pigeons stained with a chemical that turns iron bright blue in colour. It highlights the balls of iron discovered by the Keays lab. Each ball of iron lies directly beneath the hairs, and there is just one per a cell. IMP

“It’s very exciting. We find these iron balls in every bird, whether it’s a pigeon or an ostrich” adds Mattias Lauwers who discovered them “but not in humans”. It is an astonishing finding, despite decades of research these conspicuous balls of iron had not been discovered.

This finding builds on previous work by the lab of David Keays who last year showed that iron-rich cells in the beak of pigeons that were believed to be the magnetic sensors, were really just blood cells. “These cells are much better candidates, because they’re definitely neurons. But we’re a long way off to understanding how magnetic sensing works – we still don’t know what these mysterious iron balls are doing.” said Dr Keays. “Who knows, perhaps they are the elusive magnetoreceptors” muses Dr Keays “only time will tell”.

The paper "An Iron-Rich Organelle in the Cuticular Plate of Avian Hair Cells" (Lauwers et al.) is published online by Current Biology on April 25, 2013.

Illustrations to be used free of charge can be downloaded from the IMP-Website: http://www.imp.ac.at/pressefoto-magnetoreceptor

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Scientific Contact
Dr David Keays
Phone: +43 (0)1 79730-3530
Mobile: +43 (0)699 19071544
e-mail: keays@imp.ac.at

Press Contact at the IMP
Dr. Heidemarie Hurtl
Communications Manager
Tel. +43 (1) 79730-3625
Mobil: +43 (0)664 8247910
e-mail: hurtl@imp.ac.at

Research Institute of Molecular Pathology
Dr. Bohr-Gasse 7
1030 Vienna
Austria

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at
http://www.imp.ac.at/pressefoto-magnetoreceptor

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>