Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird Navigation - Great Balls of Iron

26.04.2013
Every year millions of birds make heroic journeys guided by the earth’s magnetic field. How they detect magnetic fields has puzzled scientists for decades. Today, the Keays lab at the Research Institute of Molecular Pathology in Vienna has added some important pieces to this puzzle.

Their work, published in Current Biology, reports the discovery of iron balls in sensory neurons. These cells, called hair cells, are found in the ear and are responsible for detecting sound and gravity. Remarkably, each cell has just one iron ball, and it is in the same place in every cell.


A image showing cells from the inner ear of pigeons stained with a chemical that turns iron bright blue in colour. It highlights the balls of iron discovered by the Keays lab. Each ball of iron lies directly beneath the hairs, and there is just one per a cell. IMP

“It’s very exciting. We find these iron balls in every bird, whether it’s a pigeon or an ostrich” adds Mattias Lauwers who discovered them “but not in humans”. It is an astonishing finding, despite decades of research these conspicuous balls of iron had not been discovered.

This finding builds on previous work by the lab of David Keays who last year showed that iron-rich cells in the beak of pigeons that were believed to be the magnetic sensors, were really just blood cells. “These cells are much better candidates, because they’re definitely neurons. But we’re a long way off to understanding how magnetic sensing works – we still don’t know what these mysterious iron balls are doing.” said Dr Keays. “Who knows, perhaps they are the elusive magnetoreceptors” muses Dr Keays “only time will tell”.

The paper "An Iron-Rich Organelle in the Cuticular Plate of Avian Hair Cells" (Lauwers et al.) is published online by Current Biology on April 25, 2013.

Illustrations to be used free of charge can be downloaded from the IMP-Website: http://www.imp.ac.at/pressefoto-magnetoreceptor

About the IMP
The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Scientific Contact
Dr David Keays
Phone: +43 (0)1 79730-3530
Mobile: +43 (0)699 19071544
e-mail: keays@imp.ac.at

Press Contact at the IMP
Dr. Heidemarie Hurtl
Communications Manager
Tel. +43 (1) 79730-3625
Mobil: +43 (0)664 8247910
e-mail: hurtl@imp.ac.at

Research Institute of Molecular Pathology
Dr. Bohr-Gasse 7
1030 Vienna
Austria

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at
http://www.imp.ac.at/pressefoto-magnetoreceptor

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>