Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird communication: chirping with syntax

09.03.2016

People communicate meaning by combining words according to syntactic rules. But this ability is not limited solely to humans: A group of evolutionary biologists from Tokyo, Uppsala and the University of Zurich have discovered that Japanese great tits, like humans, have also evolved syntax. By combining their various calls using specific rules, these songbirds can communicate specific messages and engage in complex interactions.

Language is one of the defining characteristics of human beings: It enables us to generate unlimited meanings from a finite number of phonetic elements. Using syntactic rules, humans are able to combine words to form phrases and sentences, and thus ascribe meaning to various things and activities.


Japanese great tits communicate according to syntactic rules.

Image: University of Zurich

Research on communication systems suggests that non-human primates and birds, too, have evolved the ability to assign meaning to arbitrary vocal elements. But until now, the evolution of syntax has been considered unique to human language.

Warning signal plus mating call means “flock together”

Evolutionary biologists at The Graduate University for Advanced Studies in Japan, the Uppsala University in Sweden and the University of Zurich are now challenging this view. For the first time, these researchers have demonstrated that Japanese great tits (Parus minor) have developed syntactic rules. These small birds are known for their large vocal repertoire, and the team discovered that they use a variety of calls and combinations of calls to interact with one another in specific situations.

The combination of sounds such as the “ABC calls”, for instance, means “watch out!”. The great tits use them when a sparrowhawk or another predator is nearby – a potentially dangerous situation. By contrast, “D calls” mean “come over here,” a call the birds use after discovering a new source of food or when wanting their partner to come to the nest.

Tits frequently combine these two calls into ABC-D calls when, for instance, the birds encounter predators and join forces to deter them. When hearing a recording of these calls played in the natural order of ABC-D, the birds are alarmed and flock together. When, however, the call ordering is artificially reversed to D-ABC, the birds do not respond.

Generating meaning by combining limited vocabulary

The researchers have therefore drawn the conclusion that syntax is not unique to human language: It has also evolved independently in birds. “The results lead to a better understanding of the underlying factors in the evolution of syntax. Because the tits combine different calls, they are able to create new meaning with their limited vocabulary. That allows them to trigger different behavioral reactions and coordinate complex social interactions,” says Dr. Michael Griesser, at the Institute of Anthropology at the University of Zurich. He believes these factors may well have contributed to the development of language in humans.

Literature:
Toshitaka N. Suzuki, David Wheatcroft, Michael Griesser. Experimental evidence for compositional syntax in bird calls. Nature Communications. March 8, 2016. doi: 10.1038/ncomms10986

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2016/kohlmeisen-zwitschern-nach-sprachaehnl...

Kurt Bodenmüller | Universität Zürich

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>