Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird brains follow the beat

27.02.2012
By training birds to ‘get rhythm’, scientists uncover evidence that our capacity to move in time with music may be connected with our ability to learn speech
Even though typical dance-floor activity might suggest otherwise, humans generally demonstrate a remarkable capacity to synchronize their body movements in response to auditory stimuli. But is this ability to move in time to musical rhythm a uniquely human trait?

Some animals are capable of vocal learning, changing the sounds they make in response to those they hear from other members of their species. Scientists have hypothesized that such behavior may be associated with the capacity for so-called ‘rhythmic synchronization’. “Motor control of vocal organs is naturally important in vocal learning,” says Yoshimasa Seki of the RIKEN Brain Science Institute in Wako. “Once auditory–motor coordination in the vocal control system has been established, a similar auditory–motor transformation system for other body parts might be derived from that.”

Studies in vocal-learning species have largely focused on case studies of individual animals, but Seki and colleagues conducted larger-scale experiments and found that budgerigars (Fig. 1) may have an inherent capacity for rhythmic synchronization1. The researchers tested their hypothesis by training eight budgerigars to peck a button in response to the rhythm of an external metronome, which could be adjusted to present the birds with audio–visual stimuli at varying intervals.

In all 46 experiments, the birds were able to consistently respond to rhythmic beats within a certain time-frame, demonstrating successful entrainment. However, the accuracy of their timing was dependent on the tempo. Only one out of seven birds was successfully able to match the onset of each beat when the stimuli were generated at 450 millisecond intervals, while all animals achieved this feat when that interval was lengthened to 1,500 or 1,800 milliseconds.

To confirm that actual synchronization was taking place, the researchers used computer simulations of other bird behavior scenarios, such as random pecking or responding directly to individual stimuli rather than the rhythm itself. However, none of these alternative models was sufficient to explain the observed activity. “Our results showed that budgerigars can show rhythmic movements synchronized with external stimuli, which means they potentially have this capability of auditory–motor entrainment as a species,” says Seki.

As such, this species may offer a useful model for future investigations of the neurological mechanisms that potentially connect vocal learning with rhythmic synchronization in both birds and humans. “Such studies should contribute to discussions of specific characteristics of the human speech system and its similarity to the vocal learning systems found in other animal species,” explains Seki.

The corresponding author for this highlight is based at the Emotional Information Joint Research Laboratory, RIKEN Brain Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>