Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bird Bones May be Hollow, But They are Also Heavy

For centuries biologists have known that bird bones are hollow, and even elementary school children know that bird skeletons are lightweight to offset the high energy cost of flying.

Nevertheless, many people are surprised to learn that bird skeletons do not actually weigh any less than the skeletons of similarly sized mammals. In other words, the skeleton of a two-ounce songbird weighs just as much as the skeleton of a two-ounce rodent.

Bird biologists have known this for a long time, but it took a modern bat researcher, Elizabeth Dumont of the University of Massachusetts Amherst, to explain how bird skeletons can look so delicate and still be heavy. The answer is that bird bones are denser than mammal bones, which makes them heavy even though they are thin and sometimes even hollow.

Her findings, supported by bone density measurements, are published in the March 17 issue of Proceedings of the Royal Society B. As Dumont explains, “The fact that bird bones are denser than bones in mammals not only makes them heavier for their size, but it may also make them stiffer and stronger. This is a new way to think about how bird skeletons are specialized for flying and solves the riddle of why bird skeletons appear so lightweight and are still relatively heavy. This has never been explained fully and so has never gotten into the textbooks. I’d like to see that change.”

Dumont measured the density of the cranium, the upper arm bone or humerus and the thigh or femur bones in song birds, rodents and bats by measuring bone mass and volume. “I found that, on average, these bones are densest in birds, followed closely by bats. Many other studies have shown that as bone density increases, so do bone stiffness and strength. Maximizing stiffness and strength relative to weight are optimization strategies that are used in the design of strong and stiff but lightweight man-made airframes,” she points out. Density is a measure of mass per unit of volume; dense bones are both heavier and stronger, much as a titanium toothpick would be stronger than a wooden one.

Over time bird bones have evolved specializations that maximize stiffness and strength, Dumont says. These specializations include high bone density, a reduction in the total number of bones, fusion of some bones, and changes in bone shape. For example, a long history of studies have shown that the main bone in the bird wing, the humerus, is quite round in cross-section. This makes it stiffer in the same way that a round toothpick is harder to snap than a flat one.

Galileo described bird bones as lightweight in 1683, Dumont says. Her new data help to dispel the common misconception that bird skeletons are lightweight relative to body mass. Instead, bird and bat skeletons only appear to be slender and delicate—because they are dense, they are also heavy. Being dense, strong and stiff is one more way that birds’ and bats’ bones are specialized for flight.

Betsy Dumont

Betsy Dumont | Newswise Science News
Further information:

Further reports about: Bones bird bones bird skeletons cranium energy cost of flying song birds

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>