Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birch Helps Wounds Heals Faster

24.01.2014
Freiburg pharmaceutical researchers elucidate the effect of a natural extract

Extracts from the birch tree have served for centuries as a traditional means of helping the damaged skin around wounds to regenerate more quickly.


Birch bark extract is prepared from the outer white layer of the tree. © Armin Scheffler

Prof. Dr. Irmgard Merfort from the Institute of Pharmaceutical Sciences of the University of Freiburg and her team have now explained the molecular mechanism behind the wound-healing effect of an extract from the outer white layer of the tree’s bark. The scientists published their findings in the journal Plos One.

The team cooperated with several other departments and institutes, such as a research group from the Institute of Molecular Medicine and Cell Research and the Institute of Experimental and Clinical Pharmacology of the University of Freiburg as well as a research group from the Dermatological Clinic of the University of Hamburg.

In the first phase of wound healing, the damaged skin cells release certain substances that lead to a temporary inflammation. They attract phagocytes, which remove foreign bacteria and dead tissue. The Freiburg scientists determined that the birch bark extract, in particular its main ingredient betulin, does in fact temporarily increase the amount of these inflammatory substances. The natural substance activates proteins that extend the half-life of the messenger ribonucleic acid (mRNA). A gene must first be translated into mRNA for the blueprint of a protein to be read by the genome. The substance triples the time in which the mRNA of a particular messenger remains stable. This messenger enables more of the protein in question, in this case the inflammatory substances, to be produced. In addition, the birch bark extract and betulin also stabilize the mRNA of further messengers.

In the second phase of wound healing the skin cells migrate and close the wound. The natural substance aids in this process: The birch cork extract and its components betulin and lupeol activate proteins that are involved in the restructuring of the actin cytoskeleton, which gives the cell its shape with the help of the structural protein actin. In this way, the substances from the birch cause keratinocytes – the most common type of cell in the outermost layer of skin – to migrate more quickly into the wound and close it.

Original Publication:
Ebeling, S./Naumann, K./Pollok, S./Vidal-y-Sy, S./Wardecki, T./Nascimento, J. M./ Boerries, M./Schmidt, G./Brandner, J. M./Merfort, I. (2013): From a traditional medicinal plant to a rational drug: understanding the clinically proven wound healing efficacy of birch bark extract. In: PLOS ONE. DOI: 10.1371/journal.pone.0086147
Article in uni’wissen:
www.pr.uni-freiburg.de/go/wundheilung
Contact:
Prof. Dr. Irmgard Merfort
Institute of Pharmaceutical Sciences
University of Freiburg
Phone: +49 (0)761 / 203-8373
E-Mail: irmgard.merfort@pharmazie.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/wundheilung

More articles from Life Sciences:

nachricht Identifying drug targets for leukaemia
02.05.2016 | The Hong Kong Polytechnic University

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>