Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birch Helps Wounds Heals Faster

24.01.2014
Freiburg pharmaceutical researchers elucidate the effect of a natural extract

Extracts from the birch tree have served for centuries as a traditional means of helping the damaged skin around wounds to regenerate more quickly.


Birch bark extract is prepared from the outer white layer of the tree. © Armin Scheffler

Prof. Dr. Irmgard Merfort from the Institute of Pharmaceutical Sciences of the University of Freiburg and her team have now explained the molecular mechanism behind the wound-healing effect of an extract from the outer white layer of the tree’s bark. The scientists published their findings in the journal Plos One.

The team cooperated with several other departments and institutes, such as a research group from the Institute of Molecular Medicine and Cell Research and the Institute of Experimental and Clinical Pharmacology of the University of Freiburg as well as a research group from the Dermatological Clinic of the University of Hamburg.

In the first phase of wound healing, the damaged skin cells release certain substances that lead to a temporary inflammation. They attract phagocytes, which remove foreign bacteria and dead tissue. The Freiburg scientists determined that the birch bark extract, in particular its main ingredient betulin, does in fact temporarily increase the amount of these inflammatory substances. The natural substance activates proteins that extend the half-life of the messenger ribonucleic acid (mRNA). A gene must first be translated into mRNA for the blueprint of a protein to be read by the genome. The substance triples the time in which the mRNA of a particular messenger remains stable. This messenger enables more of the protein in question, in this case the inflammatory substances, to be produced. In addition, the birch bark extract and betulin also stabilize the mRNA of further messengers.

In the second phase of wound healing the skin cells migrate and close the wound. The natural substance aids in this process: The birch cork extract and its components betulin and lupeol activate proteins that are involved in the restructuring of the actin cytoskeleton, which gives the cell its shape with the help of the structural protein actin. In this way, the substances from the birch cause keratinocytes – the most common type of cell in the outermost layer of skin – to migrate more quickly into the wound and close it.

Original Publication:
Ebeling, S./Naumann, K./Pollok, S./Vidal-y-Sy, S./Wardecki, T./Nascimento, J. M./ Boerries, M./Schmidt, G./Brandner, J. M./Merfort, I. (2013): From a traditional medicinal plant to a rational drug: understanding the clinically proven wound healing efficacy of birch bark extract. In: PLOS ONE. DOI: 10.1371/journal.pone.0086147
Article in uni’wissen:
www.pr.uni-freiburg.de/go/wundheilung
Contact:
Prof. Dr. Irmgard Merfort
Institute of Pharmaceutical Sciences
University of Freiburg
Phone: +49 (0)761 / 203-8373
E-Mail: irmgard.merfort@pharmazie.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/wundheilung

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>