Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosynthetics production with detours

03.11.2008
Helmholtz researchers in Braunschweig calculate how more can be brought out of bacteria

Scientists at the Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig, Germany have achieved an important advance in better understanding metabolic pathways in bacteria and their use. Using computer models, the “System and Synthetic Biology” working group, headed up by Vítor Martins dos Santos, calculated the genetic changes that are necessary for increasing the production of biosynthetics in the Pseudomonas putida bacteria.

Experiments in the laboratory subsequently confirmed the results. With this, the creation of natural synthetics could be increased in a targeted manner in the future. The well-known science magazine, “PLoS Computational Biology” published the results today.

Pseudonomads are bacteria that occur everywhere in our environment. Their changeable and flexible metabolism makes it possible for them to live in different habitats, in water, in soil, on plants and in animals. Among these pseudonomads, there are exponents that can be used in biotechnology. These include Pseudomonas putida: It produces chemicals, pharmaceutical products, degrades waste and toxins. It also plays an important role in manufacturing high-quality substances for industry.

Now, in cooperation with a working group at the Virginia University in America, the researchers working with Martins dos Santos searched for possibilities of increasing the production of natural materials in P. putida. For this, they chose the chemical compound, polyhydroxy butanoic acid (PHB): It is one of the important biosynthetics, which could play a major role in medicine and industry in the future. From it, seam materials, screws, adhesives or implants can be created, which dissolve after an operation or biodegradable packaging. In order to increase the yield of PHB in P. putida, the researchers developed a mathematical model.

However, the path toward such a model is long and drawn-out. “When sequencing the genome of an organism, you frequently do not know what the individual genes mean and how their interaction functions”, says Martins dos Santos. Based on computer models and knowledge from databases, the researchers created a network of individual genes and metabolic processes in P. putida. “All of this is similar to a map with cities and motorways”, say, Jacek Puchalka, a colleague in Martins dos Santos’ working group. “On some roads, there is a great deal of traffic, while others are very quiet. Some roads are blocked and then there are detours. The metabolic paths in P. putida behave in exactly the same way.”

The researchers took advantage of the ability of bacteria to divert their metabolic paths, if a path is disrupted by mutations. The computer model shows which paths need to be changed in P. putida, in order to increase the yield of PHB. This is important for industry: Currently, the production of PHB is still very long and drawn-out and really not justifiable against the oil-based synthetics. “In future, it will be possible to manufacture biosynthetics more efficiently in large quantities. An if we have made our contribution to this, we are very pleased”, says Puchalka.

Hannes Schlender | alfa
Further information:
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>