Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biosynthetics production with detours

Helmholtz researchers in Braunschweig calculate how more can be brought out of bacteria

Scientists at the Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig, Germany have achieved an important advance in better understanding metabolic pathways in bacteria and their use. Using computer models, the “System and Synthetic Biology” working group, headed up by Vítor Martins dos Santos, calculated the genetic changes that are necessary for increasing the production of biosynthetics in the Pseudomonas putida bacteria.

Experiments in the laboratory subsequently confirmed the results. With this, the creation of natural synthetics could be increased in a targeted manner in the future. The well-known science magazine, “PLoS Computational Biology” published the results today.

Pseudonomads are bacteria that occur everywhere in our environment. Their changeable and flexible metabolism makes it possible for them to live in different habitats, in water, in soil, on plants and in animals. Among these pseudonomads, there are exponents that can be used in biotechnology. These include Pseudomonas putida: It produces chemicals, pharmaceutical products, degrades waste and toxins. It also plays an important role in manufacturing high-quality substances for industry.

Now, in cooperation with a working group at the Virginia University in America, the researchers working with Martins dos Santos searched for possibilities of increasing the production of natural materials in P. putida. For this, they chose the chemical compound, polyhydroxy butanoic acid (PHB): It is one of the important biosynthetics, which could play a major role in medicine and industry in the future. From it, seam materials, screws, adhesives or implants can be created, which dissolve after an operation or biodegradable packaging. In order to increase the yield of PHB in P. putida, the researchers developed a mathematical model.

However, the path toward such a model is long and drawn-out. “When sequencing the genome of an organism, you frequently do not know what the individual genes mean and how their interaction functions”, says Martins dos Santos. Based on computer models and knowledge from databases, the researchers created a network of individual genes and metabolic processes in P. putida. “All of this is similar to a map with cities and motorways”, say, Jacek Puchalka, a colleague in Martins dos Santos’ working group. “On some roads, there is a great deal of traffic, while others are very quiet. Some roads are blocked and then there are detours. The metabolic paths in P. putida behave in exactly the same way.”

The researchers took advantage of the ability of bacteria to divert their metabolic paths, if a path is disrupted by mutations. The computer model shows which paths need to be changed in P. putida, in order to increase the yield of PHB. This is important for industry: Currently, the production of PHB is still very long and drawn-out and really not justifiable against the oil-based synthetics. “In future, it will be possible to manufacture biosynthetics more efficiently in large quantities. An if we have made our contribution to this, we are very pleased”, says Puchalka.

Hannes Schlender | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>