Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosynthetic grape-derived compound prevents progression of Alzheimer's disease in mice

03.05.2012
Mount Sinai School of Medicine researchers have succeeded in developing a biosynthetic polyphenol that improves cognitive function in mice with Alzheimer's disease (AD).

The findings, published in a recent issue of the Journal of Neuroscience, provide insight in determining the feasibility of biosynthetic polyphenols as a possible therapy for AD in humans, a progressive neurodegenerative disease for which there is currently no cure.

Polyphenols, which occur naturally in grapes, fruits, and vegetables, have been shown to prevent the cognitive decline associated with AD in a mouse model, but the molecules are very complex and are extensively metabolized in the body. This is the first study to determine which specific subfraction of these molecules penetrates the animal brain, and demonstrate that a drug compound similar to polyphenols can exert similar bioactivities.

A research group led by Giulio Maria Pasinetti, MD, PhD, Saunders Family Professor and Chair in Neurology at Mount Sinai School of Medicine, has been exploring the application of specific grape-derived polyphenols for the treatment of AD. Previously, this group found that certain grape-seeds extracts, comprised of a complex mixture of naturally occurring polyphenols, were capable of lessening cognitive deterioration and reducing brain neuropathology in an animal model of AD, but they did not know how to manipulate the natural extract into a pharmaceutical compound that could be used by the brain.

"My team, along with many members of the scientific community, did not know how we could harness the efficacy of naturally occurring polyphenols in food for treatment of Alzheimer's disease," Dr. Pasinetti said. "We were skeptical that these naturally occurring polyphenols would reach the brain because they are extensively metabolized following ingestion."

The researchers separated the natural occurring polyphenols from grapes, sorted them by size, and administered each for five months through drinking water to mice genetically altered to develop AD, after which they assessed brain neuropathology and cognitive function of the mice. They identified a specific grape polyphenol metabolite that was capable of selectively reaching and accumulating in the brain. This compound reduced the neuropathology of AD in the brain by preventing the accumulation of abnormal proteins in the brain, a hallmark of AD.

Dr. Pasinetti's team analyzed the structure of this polyphenol by nuclear magnetic resonance imaging and recreated it biosynthetically in the laboratory. Dr. Pasinetti and his collaborators discovered that the synthetic polyphenol generated in the laboratory also promoted plasticity and benefits in learning and memory functions in the brains of the mice.

"While this is an exciting development, we have a lot to discover and many years of testing before this agent can be considered in humans," said Dr. Pasinetti. "I look forward to further studying this compound to determine its feasibility as a treatment for Alzheimer's disease."

Dr. Pasinetti is currently exploring the possibility of delivering biosynthetic polyphenols nasally or subcutaneously, thereby preventing them from being metabolized in the liver.

Mount Sinai researchers are supported by a grant from the National Institutes of Health. Dr. Giulio Maria Pasinetti is a named inventor of a pending patent application filed by Mount Sinai School of Medicine (MSSM) related to the study of Alzheimer's disease. In the event the pending or issued patent is licensed, Dr. Pasinetti would be entitled to a share of any proceeds MSSM receives from the licensee.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of the leading medical schools in the United States. The Medical School is noted for innovation in education, biomedical research, clinical care delivery, and local and global community service. It has more than 3,400 faculty in 32 departments and 14 research institutes, and ranks among the top 20 medical schools both in National Institutes of Health (NIH) funding and by US News and World Report.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2011, US News and World Report ranked The Mount Sinai Hospital 16th on its elite Honor Roll of the nation's top hospitals based on reputation, safety, and other patient-care factors. Of the top 20 hospitals in the United States, Mount Sinai is one of 12 integrated academic medical centers whose medical school ranks among the top 20 in NIH funding and US News and World Report and whose hospital is on the US News and World Report Honor Roll. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 560,000 outpatient visits took place.

For more information, visit http://www.mountsinai.org/.

Find Mount Sinai on:
Facebook: http://www.facebook.com/mountsinainyc
Twitter: @mountsinainyc
YouTube: http://www.youtube.com/mountsinainy

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu
http://www.mountsinai.org/

Further reports about: Alzheimer MSSM Medical Wellness Medicine NIH biosynthetic health services

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>