Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosensors: Sweet and simple

15.04.2011
New substrates boost the sensitivity of surface-enhanced Raman spectroscopy for the detection of glucose at physiological concentrations

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and versatile analytical tool that is widely used in biosensing applications. In conventional Raman spectroscopy, molecules are detected by their characteristic scattering of laser light, but the sensitivity of the standard method is relatively low.

By detecting the same Raman scattering from molecules adsorbed to rough metal surfaces, however, the sensitivity can be enhanced remarkably, even allowing the detection of single molecules (see image). Unfortunately, the mechanism of this enhancement is not well understood and is strongly dependent on the combination of surface and molecular target.

Malini Olivo and co-workers at the A*STAR Singapore Bioimaging Consortium and Institute of Microelectronics have now developed a new class of surface that provides a much-needed sensitivity enhancement for the detection of glucose[1]. The new substrate promises the fast, direct and accurate detection of glucose in solution at physiological concentrations.

Olivo and her co-workers have been investigating SERS for the measurement of glucose in biological samples. Glucose has very low Raman scattering efficiency and existing substrates for SERS fail to bring the method’s sensitivity of detection up to a level suitable for detecting the typical concentrations in real samples.

Instead of the commonly used rough metal substrates, the researchers turned to silicon, which they etched to form a well-defined pattern of nanogaps. They then coated the patterned silicon with thin layers of silver and gold. In tests comparing the new substrate with commercial substrates for glucose detection, Olivo and her team found that the silicon-based substrate gave the sensitivity boost they were looking for, which they attribute to the uniformity of roughness provided by the nanogap pattern.

“We were actually very surprised by our substrate’s high reproducibility,” say Olivo. “The best reproducibility reported previously for glucose was only about 10%. However, due to the special design and pattern of our substrate, we achieved reproducibility of about 3–4%, which is outstanding.” The nanogap substrate also provided good sensitivity for the detection of glucose in the physiologically important 0–25 millimolar range.

Olivo and her co-workers are already building on their success with work on an analogous system for sensing proteins. “We would like to translate similar SERS substrate platforms to optical fibers in order to develop a minimally invasive in vivo SERS platform for clinical diagnostics,” she says. The researchers have high hopes that small sensors based on this SERS platform may one day be implanted into patients for real-time glucose sensing.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Bioimaging Consortium and the Institute of Microelectronics

Journal information

[1] Dinish, U. S., Yaw, F. C., Agarwal, A. & Olivo, M. Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing. Biosensors and Bioelectronics 26, 1987–1992 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6304
http://www.researchsea.com

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>