Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biosensors: Hormonal attractions

Ultrasmall silicon wires could detect subtle changes in estrogen receptor-binding DNA sequences that are implicated in breast cancer

Estrogen receptor (ER) proteins play a major role in controlling the transcription of genetic information from DNA to messenger RNA in cells. Understanding how ER proteins interact with specific DNA regulatory sequences may shed new light on important physiological processes in the body, such as cell growth and differentiation, as well as the development and progression of breast cancer. Guo-Jun Zhang at the A*STAR Institute of Microelectronics and co-workers[1] have now developed a detector that uses silicon nanowires (SiNWs) to evaluate these interactions.

The magnitude of the transcriptional activity that arises from the ER–DNA binding varies from one gene to another. Some genes are highly affected while others are only marginally changed. Zhang and his co-workers therefore investigated how slight variations in nucleotide composition affect the binding affinity between ER and DNA. By combining this new information with existing experimental data on gene expression, the researchers could predict transcriptional outcome following ER–DNA binding and gain new insight into ER signaling.

Most imaging techniques developed for the study of interactions between ER proteins and DNA targets are time-consuming and require the use of fluorescent labels. A number of label-free methods exist, but they lack the sensitivity needed to distinguish subtle changes in ER–DNA binding. The new system created by Zhang’s team is both label-free and highly sensitive.

The researchers prepared their ER-based sensor by modifying a nanostructured biosensing platform previously used to detect cardiac biomarkers and the dengue virus. They generated SiNW arrays on a silica substrate (pictured) through optical lithography and covered the silicon surfaces with functional organosilane and organic molecules, which allowed them to immobilize the ER proteins on the nanowires. Next, a well-shaped sample holder, constructed of insulating material, was pasted around the SiNW area.

After exposing the ER-functionalized nanowires with the target DNA, the team measured the change in resistance induced by ER–DNA complex formation to assess the binding affinity. Upon binding to ERs, DNA strands increased the overall increase in resistance of the SiNWs by adding negative charges.

The researchers discovered that the sensor could detect ultralow levels of ER-bound DNA and discriminate ER-specific from mutant DNA sequences. Moreover, the DNA easily detached from the ER-functionalized nanowires upon contact with a detergent, enabling the regeneration of the sensor.

“The SiNW array biosensor platform is now helping us in the multiplexed characterization of protein–DNA interactions,” says Zhang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Zhang, G.-J. et al. Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions. Biosensors and Bioelectronics 26, 365–370 (2010).

Lee Swee Heng | Research asia research news
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>