Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosensors: Hormonal attractions

28.03.2011
Ultrasmall silicon wires could detect subtle changes in estrogen receptor-binding DNA sequences that are implicated in breast cancer

Estrogen receptor (ER) proteins play a major role in controlling the transcription of genetic information from DNA to messenger RNA in cells. Understanding how ER proteins interact with specific DNA regulatory sequences may shed new light on important physiological processes in the body, such as cell growth and differentiation, as well as the development and progression of breast cancer. Guo-Jun Zhang at the A*STAR Institute of Microelectronics and co-workers[1] have now developed a detector that uses silicon nanowires (SiNWs) to evaluate these interactions.

The magnitude of the transcriptional activity that arises from the ER–DNA binding varies from one gene to another. Some genes are highly affected while others are only marginally changed. Zhang and his co-workers therefore investigated how slight variations in nucleotide composition affect the binding affinity between ER and DNA. By combining this new information with existing experimental data on gene expression, the researchers could predict transcriptional outcome following ER–DNA binding and gain new insight into ER signaling.

Most imaging techniques developed for the study of interactions between ER proteins and DNA targets are time-consuming and require the use of fluorescent labels. A number of label-free methods exist, but they lack the sensitivity needed to distinguish subtle changes in ER–DNA binding. The new system created by Zhang’s team is both label-free and highly sensitive.

The researchers prepared their ER-based sensor by modifying a nanostructured biosensing platform previously used to detect cardiac biomarkers and the dengue virus. They generated SiNW arrays on a silica substrate (pictured) through optical lithography and covered the silicon surfaces with functional organosilane and organic molecules, which allowed them to immobilize the ER proteins on the nanowires. Next, a well-shaped sample holder, constructed of insulating material, was pasted around the SiNW area.

After exposing the ER-functionalized nanowires with the target DNA, the team measured the change in resistance induced by ER–DNA complex formation to assess the binding affinity. Upon binding to ERs, DNA strands increased the overall increase in resistance of the SiNWs by adding negative charges.

The researchers discovered that the sensor could detect ultralow levels of ER-bound DNA and discriminate ER-specific from mutant DNA sequences. Moreover, the DNA easily detached from the ER-functionalized nanowires upon contact with a detergent, enabling the regeneration of the sensor.

“The SiNW array biosensor platform is now helping us in the multiplexed characterization of protein–DNA interactions,” says Zhang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Zhang, G.-J. et al. Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions. Biosensors and Bioelectronics 26, 365–370 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6294
http://www.researchsea.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>