Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosensors: Hormonal attractions

28.03.2011
Ultrasmall silicon wires could detect subtle changes in estrogen receptor-binding DNA sequences that are implicated in breast cancer

Estrogen receptor (ER) proteins play a major role in controlling the transcription of genetic information from DNA to messenger RNA in cells. Understanding how ER proteins interact with specific DNA regulatory sequences may shed new light on important physiological processes in the body, such as cell growth and differentiation, as well as the development and progression of breast cancer. Guo-Jun Zhang at the A*STAR Institute of Microelectronics and co-workers[1] have now developed a detector that uses silicon nanowires (SiNWs) to evaluate these interactions.

The magnitude of the transcriptional activity that arises from the ER–DNA binding varies from one gene to another. Some genes are highly affected while others are only marginally changed. Zhang and his co-workers therefore investigated how slight variations in nucleotide composition affect the binding affinity between ER and DNA. By combining this new information with existing experimental data on gene expression, the researchers could predict transcriptional outcome following ER–DNA binding and gain new insight into ER signaling.

Most imaging techniques developed for the study of interactions between ER proteins and DNA targets are time-consuming and require the use of fluorescent labels. A number of label-free methods exist, but they lack the sensitivity needed to distinguish subtle changes in ER–DNA binding. The new system created by Zhang’s team is both label-free and highly sensitive.

The researchers prepared their ER-based sensor by modifying a nanostructured biosensing platform previously used to detect cardiac biomarkers and the dengue virus. They generated SiNW arrays on a silica substrate (pictured) through optical lithography and covered the silicon surfaces with functional organosilane and organic molecules, which allowed them to immobilize the ER proteins on the nanowires. Next, a well-shaped sample holder, constructed of insulating material, was pasted around the SiNW area.

After exposing the ER-functionalized nanowires with the target DNA, the team measured the change in resistance induced by ER–DNA complex formation to assess the binding affinity. Upon binding to ERs, DNA strands increased the overall increase in resistance of the SiNWs by adding negative charges.

The researchers discovered that the sensor could detect ultralow levels of ER-bound DNA and discriminate ER-specific from mutant DNA sequences. Moreover, the DNA easily detached from the ER-functionalized nanowires upon contact with a detergent, enabling the regeneration of the sensor.

“The SiNW array biosensor platform is now helping us in the multiplexed characterization of protein–DNA interactions,” says Zhang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Zhang, G.-J. et al. Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions. Biosensors and Bioelectronics 26, 365–370 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6294
http://www.researchsea.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>