Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biosensor provides rapid virus field tests

New device to detect bacteria and virus in 30 minutes in situ

Prof. Samuel Lo, Associate Head of the Department of Applied Biology and Chemical Technology, and Dr Derek Or, Associate Professor of the Department of Electrical Engineering, have jointly developed a Portable Real-time DNA Biosensor.

The device is designed to perform speedy in situ DNA tests for bio-defence and health surveillance purposes in areas suspected to be contaminated with pathogens and/or undesirable microbes.

Unlike conventional laboratory tests that take at least one or two days, this hand-held, battery-operated and fully automated biosensor is built upon a novel DNA-based bio-chemo-physical conversion method. It is able to detect harmful bacteria, such as E. coli, salmonella and staphylococcus, on site within 30 minutes. It can be adapted to cover such deadly viruses as SARS, H5N1 flu and swine flu viruses in future. It can also be re-designed to monitor possible biological attack from anthrax, smallpox and cholera etc.

Comprising a reaction chamber, an ultrasound core and an electronics power board, the new biosensor can test for the presence of a specific pathogen in water and air samples by recognizing the existence of its DNA. When this pathogen is added to the reaction chamber, the further addition of both specific primer-linked thrombin and fibrinogen triggers an innovative molecular bio-chemical reaction. In the case of a DNA primer match, the enzyme will convert fibrinogen into a lump of visible gel that blocks the transmission of ultrasound signals through the reaction chamber. A drop in the ultrasound reading is then a strong indicator of the presence of the target pathogen in the sample.

This invention won a Gold Award at the 39th International Exhibition of Inventions in Geneva, Switzerland.

This article was first appeared on PolyU Milestone, June 2011 edition.

Wilfred Lai | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>