Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioscientists develop 'grammar' to design useful synthetic living systems

14.03.2014

Researchers at Virginia Tech and the Massachusetts Institute of Technology have used a computer-aided design tool to create genetic languages to guide the design of biological systems.

Known as GenoCAD, the open-source software was developed by researchers at the Virginia Bioinformatics Institute at Virginia Tech to help synthetic biologists capture biological rules to engineer organisms that produce useful products or health-care solutions from inexpensive, renewable materials.

GenoCAD helps researchers in the design of protein expression vectors, artificial gene networks, and other genetic constructs, essentially combining engineering approaches with biology. 

Synthetic biologists have an increasingly large library of naturally derived and synthetic parts at their disposal to design and build living systems. These parts are the words of a DNA language and the “grammar” a set of design rules governing the language.

It has to be expressive enough to allow scientists to generate a broad range of constructs, but it has to be focused enough to limit the possibilities of designing faulty constructs.

MIT’s Oliver Purcell, a postdoctoral associate, and Timothy Lu, an associate professor in the Department of Electrical Engineering and Computer Science, have developed a language detailed in ACS Synthetic Biology describing how to design a broad range of synthetic transcription factors for animals, plants, and other organisms with cells that contain a nucleus.

Meanwhile, Sakiko Okumoto, an assistant professor of plant pathology, physiology, and weed science at the Virginia Tech College of Agriculture and Life Sciences, and Amanda Wilson, a software engineer with the Synthetic Biology Group at the Virginia Bioinformatics Institute, developed a language describing design rules for expressing genes in the chloroplast of microalgae Their work was published in the Jan. 15 issue of Bioinformatics

“Just like software engineers need different languages like HTML, SQL, or Java to develop different kinds of software applications, synthetic biologists need languages for different biological applications,” said Jean Peccoud, an associate professor at the Virginia Bioinformatics Institute, and principal investigator of the GenoCAD project. “From its inception, we envisioned GenoCAD as a framework allowing users to capture their expertise of a particular domain in languages that they could use themselves or share with others.” 

The researchers said encapsulating current knowledge by defining standards will become increasingly important as the number and complexity of components engineered by synthetic biologists increases.

They propose that grammars are a first step toward the standardization of a broad range of synthetic genetic parts that could be combined to develop innovative products.

“Developing a grammar in GenoCAD is a little like writing a review paper,” Purcell said. “You start with the headings and you progressively dig deeper in the details. At the end of the process, you have a much better appreciation for what you know and what you don’t know about a particular domain.”

Lu added, “Our group has a recognized expertise in synthetic transcription factors. We hope that this work will help a broad range of scientists use our results in their own projects.”

“GenoCAD exemplifies the kind of cyberinfrastructure the institute is known for,” said Dennis Dean, the director of the Virginia Bioinformatics Institute. “This type of portal can enable collaborations across disciplines and institutions to foster a team approach to today’s most pressing scientific challenges.”

This work was supported by the Defense Advanced Research Projects Agency, the National Institutes of Health New Innovator Award (1DP2OD008435), the National Science Foundation (1124247 to T.K.L. and 0850100 to J.P.), and the Office of Naval Research (N00014-13-1-0424). Peccoud is Chief Scientific Officer of GenoFAB LLC, a company providing products and services derived from GenoCAD.

A university-level Research Institute of Virginia Tech, the Virginia Bioinformatics Institute was established in 2000 with an emphasis on informatics of complex interacting systems scaling the microbiome to the entire globe. It helps solve challenges posed to human health, security, and sustainability. Headquartered at the Blacksburg campus, the institute occupies 154,600 square feet in research facilities, including state-of-the-art core laboratory and high-performance computing facilities, as well as research offices in the Virginia Tech Research Center in Arlington, Va.

Written by Emily Kale.

Tiffany L Trent

Communication Coordinator

540-231-6822

ttrent@vt.edu

Tiffany Trent | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Nerve cells with a sense of rhythm
25.08.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>