Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioscientists develop 'grammar' to design useful synthetic living systems

14.03.2014

Researchers at Virginia Tech and the Massachusetts Institute of Technology have used a computer-aided design tool to create genetic languages to guide the design of biological systems.

Known as GenoCAD, the open-source software was developed by researchers at the Virginia Bioinformatics Institute at Virginia Tech to help synthetic biologists capture biological rules to engineer organisms that produce useful products or health-care solutions from inexpensive, renewable materials.

GenoCAD helps researchers in the design of protein expression vectors, artificial gene networks, and other genetic constructs, essentially combining engineering approaches with biology. 

Synthetic biologists have an increasingly large library of naturally derived and synthetic parts at their disposal to design and build living systems. These parts are the words of a DNA language and the “grammar” a set of design rules governing the language.

It has to be expressive enough to allow scientists to generate a broad range of constructs, but it has to be focused enough to limit the possibilities of designing faulty constructs.

MIT’s Oliver Purcell, a postdoctoral associate, and Timothy Lu, an associate professor in the Department of Electrical Engineering and Computer Science, have developed a language detailed in ACS Synthetic Biology describing how to design a broad range of synthetic transcription factors for animals, plants, and other organisms with cells that contain a nucleus.

Meanwhile, Sakiko Okumoto, an assistant professor of plant pathology, physiology, and weed science at the Virginia Tech College of Agriculture and Life Sciences, and Amanda Wilson, a software engineer with the Synthetic Biology Group at the Virginia Bioinformatics Institute, developed a language describing design rules for expressing genes in the chloroplast of microalgae Their work was published in the Jan. 15 issue of Bioinformatics

“Just like software engineers need different languages like HTML, SQL, or Java to develop different kinds of software applications, synthetic biologists need languages for different biological applications,” said Jean Peccoud, an associate professor at the Virginia Bioinformatics Institute, and principal investigator of the GenoCAD project. “From its inception, we envisioned GenoCAD as a framework allowing users to capture their expertise of a particular domain in languages that they could use themselves or share with others.” 

The researchers said encapsulating current knowledge by defining standards will become increasingly important as the number and complexity of components engineered by synthetic biologists increases.

They propose that grammars are a first step toward the standardization of a broad range of synthetic genetic parts that could be combined to develop innovative products.

“Developing a grammar in GenoCAD is a little like writing a review paper,” Purcell said. “You start with the headings and you progressively dig deeper in the details. At the end of the process, you have a much better appreciation for what you know and what you don’t know about a particular domain.”

Lu added, “Our group has a recognized expertise in synthetic transcription factors. We hope that this work will help a broad range of scientists use our results in their own projects.”

“GenoCAD exemplifies the kind of cyberinfrastructure the institute is known for,” said Dennis Dean, the director of the Virginia Bioinformatics Institute. “This type of portal can enable collaborations across disciplines and institutions to foster a team approach to today’s most pressing scientific challenges.”

This work was supported by the Defense Advanced Research Projects Agency, the National Institutes of Health New Innovator Award (1DP2OD008435), the National Science Foundation (1124247 to T.K.L. and 0850100 to J.P.), and the Office of Naval Research (N00014-13-1-0424). Peccoud is Chief Scientific Officer of GenoFAB LLC, a company providing products and services derived from GenoCAD.

A university-level Research Institute of Virginia Tech, the Virginia Bioinformatics Institute was established in 2000 with an emphasis on informatics of complex interacting systems scaling the microbiome to the entire globe. It helps solve challenges posed to human health, security, and sustainability. Headquartered at the Blacksburg campus, the institute occupies 154,600 square feet in research facilities, including state-of-the-art core laboratory and high-performance computing facilities, as well as research offices in the Virginia Tech Research Center in Arlington, Va.

Written by Emily Kale.

Tiffany L Trent

Communication Coordinator

540-231-6822

ttrent@vt.edu

Tiffany Trent | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>