Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biophysicists manipulate 'zipper,' reveal protein folding dynamics

19.01.2010
Single-molecule, real-time measurements of a key biological process

Biophysicists at TUM, the Technische Universitaet Muenchen, have published the results of single-molecule experiments that bring a higher-resolution tool to the study of protein folding.

How proteins arrive at the three-dimensional shapes that determine their essential functions – or cause grave diseases when folding goes wrong – is considered one of the most important and least understood questions in the biological and medical sciences.

Folding itself follows a path determined by its energy landscape, a complex property described in unprecedented detail by the TUM researchers. In this week's issue of the Proceedings of the National Academy of Sciences (USA), they report taking hold of a single, zipper-like protein molecule and mapping changes in its energy landscape during folding and unfolding.

Previous studies, including atomic force microscopy experiments by the same Munich laboratory, have gone a long way toward characterizing energy thresholds or barriers that stand between a protein's unfolded and folded states. Detailed observations of the quick transition from one state to the other have remained elusive. The results published this week open the door to higher-resolution, direct measurements. Better characterization of the folding process is seen as a vital link in understanding the chain of events leading from DNA coding for a protein to that protein's biological function. Another motivation for research in this field is the search for new drugs and therapies, because malfunctions in protein folding are implicated in a number of serious diseases – including diabetes, cancer, cystic fibrosis, prion diseases, and Alzheimer's.

This is the latest in a long series of single-molecule biophysical experiments carried out by Professor Matthias Rief and colleagues in the TUM Department of Physics. Co-authors Christof Gebhardt and Thomas Bornschloegl are members of Rief's lab; Gebhardt also is a member of the Munich Center for Integrated Protein Science.

As a model system for studying real-time protein folding dynamics, the TUM scientists chose a so-called leucine zipper found in yeast. It offers, as proteins go, a relatively simple "coiled coil" structure and zipper-like folding action: Picture two amino acid strings side by side, joined at the bottom, open at the top, and made essentially to zip together.

The researchers extended this structure so that they could make independent measurements at the top, bottom, and middle parts of the zipper. They took hold of the free ends at the top of the zipper with handles made of double-stranded DNA. These DNA handles in turn were attached to tiny beads that could be directly manipulated by "optical tweezers" – a tool based on the ability of laser beams with a certain kind of profile to pin down nanoscale objects. One end of the protein molecule was held fixed, and the other was held under tension but with some freedom to move, so that folding dynamics could be measured directly, in real time, as the protein zipped and unzipped. This arrangement enabled measurements with high resolution in both space and time.

"What I consider the major improvement is that the new experiments allow the observation of thousands of transitions between the folded and the unfolded state," Rief said. "This enables us to detect not only the folded and unfolded states but also, directly, the excursions of the large energy barriers separating those states. This has previously been impossible, and it now allows direct insight into the precise energy profile of this barrier."

Publication: Full distance resolved folding energy landscape of one single protein molecule, by J. Christof M. Gebhart, Thomas Bornschloegl, and Matthias Rief, PNAS Early Edition for the week of Jan. 18, 2010.

Contact:

Prof. Matthias Rief
Chair for Experimental Physics
Technische Universität Muenchen (TUM)
James-Franck-Str. 1
85748 Garching, Germany
Tel: +49 89 289 12471
Fax: +49 89 289 12523
E-mail: mrief@ph.tum.de

Patrick Regan | EurekAlert!
Further information:
http://portal.mytum.de

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>