Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biophysicists manipulate 'zipper,' reveal protein folding dynamics

19.01.2010
Single-molecule, real-time measurements of a key biological process

Biophysicists at TUM, the Technische Universitaet Muenchen, have published the results of single-molecule experiments that bring a higher-resolution tool to the study of protein folding.

How proteins arrive at the three-dimensional shapes that determine their essential functions – or cause grave diseases when folding goes wrong – is considered one of the most important and least understood questions in the biological and medical sciences.

Folding itself follows a path determined by its energy landscape, a complex property described in unprecedented detail by the TUM researchers. In this week's issue of the Proceedings of the National Academy of Sciences (USA), they report taking hold of a single, zipper-like protein molecule and mapping changes in its energy landscape during folding and unfolding.

Previous studies, including atomic force microscopy experiments by the same Munich laboratory, have gone a long way toward characterizing energy thresholds or barriers that stand between a protein's unfolded and folded states. Detailed observations of the quick transition from one state to the other have remained elusive. The results published this week open the door to higher-resolution, direct measurements. Better characterization of the folding process is seen as a vital link in understanding the chain of events leading from DNA coding for a protein to that protein's biological function. Another motivation for research in this field is the search for new drugs and therapies, because malfunctions in protein folding are implicated in a number of serious diseases – including diabetes, cancer, cystic fibrosis, prion diseases, and Alzheimer's.

This is the latest in a long series of single-molecule biophysical experiments carried out by Professor Matthias Rief and colleagues in the TUM Department of Physics. Co-authors Christof Gebhardt and Thomas Bornschloegl are members of Rief's lab; Gebhardt also is a member of the Munich Center for Integrated Protein Science.

As a model system for studying real-time protein folding dynamics, the TUM scientists chose a so-called leucine zipper found in yeast. It offers, as proteins go, a relatively simple "coiled coil" structure and zipper-like folding action: Picture two amino acid strings side by side, joined at the bottom, open at the top, and made essentially to zip together.

The researchers extended this structure so that they could make independent measurements at the top, bottom, and middle parts of the zipper. They took hold of the free ends at the top of the zipper with handles made of double-stranded DNA. These DNA handles in turn were attached to tiny beads that could be directly manipulated by "optical tweezers" – a tool based on the ability of laser beams with a certain kind of profile to pin down nanoscale objects. One end of the protein molecule was held fixed, and the other was held under tension but with some freedom to move, so that folding dynamics could be measured directly, in real time, as the protein zipped and unzipped. This arrangement enabled measurements with high resolution in both space and time.

"What I consider the major improvement is that the new experiments allow the observation of thousands of transitions between the folded and the unfolded state," Rief said. "This enables us to detect not only the folded and unfolded states but also, directly, the excursions of the large energy barriers separating those states. This has previously been impossible, and it now allows direct insight into the precise energy profile of this barrier."

Publication: Full distance resolved folding energy landscape of one single protein molecule, by J. Christof M. Gebhart, Thomas Bornschloegl, and Matthias Rief, PNAS Early Edition for the week of Jan. 18, 2010.

Contact:

Prof. Matthias Rief
Chair for Experimental Physics
Technische Universität Muenchen (TUM)
James-Franck-Str. 1
85748 Garching, Germany
Tel: +49 89 289 12471
Fax: +49 89 289 12523
E-mail: mrief@ph.tum.de

Patrick Regan | EurekAlert!
Further information:
http://portal.mytum.de

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>